SYMMETRY REDUCTIONS AND EXACT-SOLUTIONS OF A CLASS OF NONLINEAR HEAT-EQUATIONS

被引:183
作者
CLARKSON, PA [1 ]
MANSFIELD, EL [1 ]
机构
[1] UNIV COLORADO, PROGRAM APPL MATH, BOULDER, CO 80309 USA
关键词
D O I
10.1016/0167-2789(94)90017-5
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Classical and nonclassical symmetries Of the nonlinear heat equation u(t) = u(xx) + f (u) are considered. The method of differential Grobner bases is used both to find the conditions on f (u) under which symmetries other than the trivial spatial and temporal translational symmetries exist, and to solve the determining equations for the infinitesimals. A catalogue of symmetry reductions is given including some new reductions for the linear heat equation and a catalogue of exact solutions of the nonlinear heat equation for cubic f (u) in terms of the roots of f (u) = 0.
引用
收藏
页码:250 / 288
页数:39
相关论文
共 108 条
[1]  
ABLOWITZ MJ, 1979, B MATH BIOL, V41, P835, DOI 10.1007/BF02462380
[2]   OPTIMAL NUMERICAL ALGORITHMS [J].
AMES, WF ;
POSTELL, FV ;
ADAMS, E .
APPLIED NUMERICAL MATHEMATICS, 1992, 10 (3-4) :235-259
[3]  
AMES WF, 1967, NONLINEAR PARTIAL DI, V1
[4]  
[Anonymous], 1983, METHOD DIFFERENTIAL
[5]  
[Anonymous], LECONS SYSTEMES EQUA
[6]  
[Anonymous], [No title captured]
[7]  
Aris R, 1975, MATH THEORY DIFFUSIO, V1
[8]  
Aris R., 1975, MATH THEORY DIFFUSIO, VI-II
[9]  
Aronson D., 1975, PARTIAL DIFFERENTIAL, P5, DOI DOI 10.1007/BFB0070595
[10]   MULTIDIMENSIONAL NON-LINEAR DIFFUSION ARISING IN POPULATION-GENETICS [J].
ARONSON, DG ;
WEINBERGER, HF .
ADVANCES IN MATHEMATICS, 1978, 30 (01) :33-76