REPRESSION OF TONB TRANSCRIPTION DURING ANAEROBIC GROWTH REQUIRES FUR-BINDING AT THE PROMOTER AND A 2ND FACTOR-BINDING UPSTREAM

被引:22
作者
YOUNG, GM
POSTLE, K
机构
[1] WASHINGTON STATE UNIV, DEPT MICROBIOL, PULLMAN, WA 99164 USA
[2] WASHINGTON STATE UNIV, DEPT BIOCHEM & BIOPHYS, PULLMAN, WA 99164 USA
关键词
D O I
10.1111/j.1365-2958.1994.tb00373.x
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Although iron is an essential nutrient, its toxicity at high levels necessitates regulated transport. In Gram-negative bacteria a central target for regulation is the TonB protein, an energy transducer that couples the cytoplasmic membrane proton motive force to active transport of (Fe-III)-siderophore complexes across the outer membrane. We have previously demonstrated the threefold repression of tonB transcription by excess iron in the presence of Fur repressor protein under aerobic conditions. In this report, we examine tonB regulation under anaerobic conditions where the solubility of iron is not a limiting factor and, presumably, siderophore-mediated transport is not required. Under these conditions, tonB transcription is repressed at least 10-fold by excess iron in the presence of Fur, but can be fully derepressed in the absence of Fur. Based on several lines of evidence, this anaerobic repression is not due to increased negative supercoiling as previously postulated. Our results rule out both supercoiling-mediated decreased promoter function and increased Fur binding as mediators of anaerobic repression. Under iron-limiting anaerobic conditions tonB expression is as high or higher than under iron-limiting aerobic conditions, suggesting that promoter function has not decreased anaerobically. Furthermore, under anaerobic conditions in tanB(+) strains, tonB promoter function is insensitive to the gyrase inhibitor novobiocin and to changes in medium osmolarity and temperature, three conditions known to change levels of supercoiling. We also rule out effects of mutations in arcA or fnr as mediators of anaerobic repression. Results from in vivo dimethyl sulphate protection footprinting indicate that Fur binds to an operator site between the -10 and -35 regions of the promoter, but not to a less homologous operator site centered at +26. The binding is, if anything, weaker under anaerobic conditions, indicating that anaerobic repression is not mediated through Fur. Additional changes in the in vivo footprint upstream from the promoter implicate a second factor in tonB anaerobic repression. Together, these results suggest that the mechanism responsible for this regulation (and, by analogy, that of other anaerobically repressed, iron-regulated genes such as cir, exbB, and fhuA) is a novel one.
引用
收藏
页码:943 / 954
页数:12
相关论文
共 58 条
[1]  
Arnow LE, 1937, J BIOL CHEM, V118, P531
[2]   FERRIC UPTAKE REGULATION PROTEIN ACTS AS A REPRESSOR, EMPLOYING IRON(II) AS A COFACTOR TO BIND THE OPERATOR OF AN IRON TRANSPORT OPERON IN ESCHERICHIA-COLI [J].
BAGG, A ;
NEILANDS, JB .
BIOCHEMISTRY, 1987, 26 (17) :5471-5477
[3]   MOLECULAR MECHANISM OF REGULATION OF SIDEROPHORE-MEDIATED IRON ASSIMILATION [J].
BAGG, A ;
NEILANDS, JB .
MICROBIOLOGICAL REVIEWS, 1987, 51 (04) :509-518
[4]   AN OVERLAP BETWEEN OSMOTIC AND ANAEROBIC STRESS RESPONSES - A POTENTIAL ROLE FOR DNA SUPERCOILING IN THE COORDINATE REGULATION OF GENE-EXPRESSION [J].
BHRIAIN, NN ;
DORMAN, CJ ;
HIGGINS, CF .
MOLECULAR MICROBIOLOGY, 1989, 3 (07) :933-942
[5]   PROMOTER MAPPING AND TRANSCRIPTIONAL REGULATION OF THE IRON ASSIMILATION SYSTEM OF PLASMID COLV-K30 IN ESCHERICHIA-COLI K-12 [J].
BINDEREIF, A ;
NEILANDS, JB .
JOURNAL OF BACTERIOLOGY, 1985, 162 (03) :1039-1046
[6]   THE PROTON MOTIVE FORCE DRIVES THE OUTER-MEMBRANE TRANSPORT OF COBALAMIN IN ESCHERICHIA-COLI [J].
BRADBEER, C .
JOURNAL OF BACTERIOLOGY, 1993, 175 (10) :3146-3150
[7]  
BRAUN V, 1985, ENZYMES BIOL MEMBR, V3, P617
[8]   REGULATION OF DIVERGENT TRANSCRIPTION FROM THE IRON-RESPONSIVE FEPB-ENTC PROMOTER-OPERATOR REGIONS IN ESCHERICHIA-COLI [J].
BRICKMAN, TJ ;
OZENBERGER, BA ;
MCINTOSH, MA .
JOURNAL OF MOLECULAR BIOLOGY, 1990, 212 (04) :669-682
[9]   TRANSPOSITION AND FUSION OF LAC GENES TO SELECTED PROMOTERS IN ESCHERICHIA-COLI USING BACTERIOPHAGE-LAMBDA AND BACTERIOPHAGE-MU [J].
CASADABAN, MJ .
JOURNAL OF MOLECULAR BIOLOGY, 1976, 104 (03) :541-555
[10]   ONE-STEP PREPARATION OF COMPETENT ESCHERICHIA-COLI - TRANSFORMATION AND STORAGE OF BACTERIAL-CELLS IN THE SAME SOLUTION [J].
CHUNG, CT ;
NIEMELA, SL ;
MILLER, RH .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1989, 86 (07) :2172-2175