A STATISTICAL-THEORY OF CREEP IN POLYCRYSTALLINE MATERIALS

被引:15
作者
ADAMS, BL
FIELD, DP
机构
[1] Yale University, New Haven
来源
ACTA METALLURGICA ET MATERIALIA | 1991年 / 39卷 / 10期
关键词
D O I
10.1016/0956-7151(91)90021-R
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Estimates for the properties of creeping polycrystals, which exhibit a power-law dependence of the stress on the strain-rate, are derived in the framework of statistical continuum theory. A creep modulus is obtained which incorporates n-point statistics for the spatial coherence of lattice orientation. For uniform boundary conditions and statistically homogeneous microstructures the modulus is shown to have local character. A hierarchy of mean field approximations enables estimates for the evolution of n-point statistical measures of the microstructure. Numerical implementation of the theory for isotropic face-centered-cubic polycrystals, incorporating two-point statistics of lattice orientation, results in substantial softening of the tensile reference stress relative to the Taylor-like uniform strain-rate upper-bound and the self-consistent estimate. Comparisons of the initial flow for the tensile axis show that estimates incorporating two-point statistics reduce the rate of rotation of the tensile axis over a significant area-fraction of the stereographic projection.
引用
收藏
页码:2405 / 2417
页数:13
相关论文
共 35 条
[1]   DESCRIPTION OF ORIENTATION COHERENCE IN POLYCRYSTALLINE MATERIALS [J].
ADAMS, BL ;
MORRIS, PR ;
WANG, TT ;
WILLDEN, KS ;
WRIGHT, SI .
ACTA METALLURGICA, 1987, 35 (12) :2935-2946
[2]  
ARMINJON M, 1987, J MEC THEOR APPL, V6, P511
[3]   OVERVIEW .42. TEXTURE DEVELOPMENT AND STRAIN-HARDENING IN RATE DEPENDENT POLYCRYSTALS [J].
ASARO, RJ ;
NEEDLEMAN, A .
ACTA METALLURGICA, 1985, 33 (06) :923-953
[4]  
Beran M. J., 1970, International Journal of Solids and Structures, V6, P1035, DOI 10.1016/0020-7683(70)90046-6
[5]  
Beran M. J., 1970, International Journal of Solids and Structures, V6, P1267, DOI 10.1016/0020-7683(70)90102-2
[6]  
BERAN MJ, 1968, STATISTICAL CONTINUU
[7]   THE PROBLEM OF 2 PLASTIC AND HETEROGENEOUS INCLUSIONS IN AN ANISOTROPIC MEDIUM [J].
BERVEILLER, M ;
FASSIFEHRI, O ;
HIHI, A .
INTERNATIONAL JOURNAL OF ENGINEERING SCIENCE, 1987, 25 (06) :691-709
[8]  
BERVEILLER M, 1979, J MECH PHYS SOLIDS, V26, P235
[9]  
BISHOP JFW, 1951, PHILOS MAG, V42, P414
[10]  
BISHOP JFW, 1951, PHILOS MAG, V42, P1298