SPECTRAL GAP AND LOGARITHMIC SOBOLEV INEQUALITY FOR KAWASAKI AND GLAUBER DYNAMICS

被引:124
作者
LU, SL [1 ]
YAU, HT [1 ]
机构
[1] NYU, COURANT INST MATH SCI, NEW YORK, NY 10012 USA
关键词
D O I
10.1007/BF02098489
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We prove that the spectral gap of the Kawasaki dynamics shrink at the rate of 1/L2 for cubes of size L provided that some mixing conditions are satisfied. We also prove that the logarithmic Sobolev inequality for the Glauber dynamics in standard cubes holds uniformly in the size of the cube if the Dobrushin-Shlosman mixing condition holds for standard cubes.
引用
收藏
页码:399 / 433
页数:35
相关论文
共 22 条
[1]  
AIZENMAN M, 1987, IMS VOL MATH APPL, P1
[2]  
CARLEN EA, 1986, LECT NOTES MATH, V1204, P341
[3]  
DAVIES EB, 1992, IDEAS METHODS MATH P
[4]  
DEMASI A, 1991, LECTURE NOTES MATH, V1501
[5]  
FUNAKI, COMMUNICATION
[6]   LOGARITHMIC SOBOLEV INEQUALITIES [J].
GROSS, L .
AMERICAN JOURNAL OF MATHEMATICS, 1975, 97 (04) :1061-1083
[7]  
KIPNIS C, HYDRODYNAMICAL LIMIT
[8]  
MARTINELLI F, APPROACH EQUILIBRIUM
[9]  
MARTINELLI F, FINITE VOLUME MIXING
[10]   CLUSTER-EXPANSION FOR D-DIMENSIONAL LATTICE SYSTEMS AND FINITE-VOLUME FACTORIZATION PROPERTIES [J].
OLIVIERI, E ;
PICCO, P .
JOURNAL OF STATISTICAL PHYSICS, 1990, 59 (1-2) :221-256