MM - EXTENSION TO LOVE WAVES OF THE CONCEPT OF A VARIABLE-PERIOD MANTLE MAGNITUDE

被引:11
作者
OKAL, EA
TALANDIER, J
机构
[1] Department of Geological Sciences, Norhtwestern University, Evanston, 60208, Illinois
[2] Laboratoire de Géophysique, Commissariat à l'Energie Atomique, Tahiti, Papeete
关键词
Love waves; magnitude scales; Mantle magnitudes; tsunami warning;
D O I
10.1007/BF00878738
中图分类号
P3 [地球物理学]; P59 [地球化学];
学科分类号
0708 ; 070902 ;
摘要
We extend to Love waves the concept of the mantle magnitude Mmintroduced recently for Rayleigh waves. Spectral amplitudes X(ω) of Love waves in the 50-300 s period range are measured on broad-band records from major events. A distance correction CD, regionalized to reflect the influence of different tectonic paths, and a source correction CS, compensating for the variation of excitation with period are effected; the exact geometry and depth of the event are however ignored. The resulting expression {Mathematical expression} is expected to be an estimation of log10M0-20, where M0 is the seismic moment of the event. All quantities in this equation are fully justified from a theoretical standpoint. The analysis of a dataset of more than 300 Love records shows that Mmcorrectly describes the seismic moment, with average residuals in the range of 0.1-0.2 unit of magnitude. No significant trend with either distance or period of measurement is present. In particular, Mmdoes not saturate and continues to grow linearly with log10M0 for very large events. The combiantion of the Rayleigh and Love Mmguards in general against underestimation of M0. © 1990 Birkhäuser Verlag.
引用
收藏
页码:355 / 384
页数:30
相关论文
共 52 条
[1]  
Boore D.M., Effect of Higher Mode Contamination on Measured Love Wave Phase Velocities, Journal of Geophysical Research, 74, pp. 6612-6616, (1969)
[2]  
Canas J., Mitchell B.J., Lateral Variation of Surface-wave Anelastic Attenuation Across the Pacific, Bull. Seismol. Soc. Am., 68, pp. 1637-1650, (1978)
[3]  
Cara M., Regional Variations of Higher Rayleigh-mode Phase Velocities: A Spatial Filtering Method, Geophysical Journal International, 54, pp. 439-460, (1978)
[4]  
Dziewonski A.M., Anderson D.L., Preliminary Reference Earth Model, Phys. Earth Planet. Inter., 25, pp. 297-356, (1981)
[5]  
Dziewonski A.M., Friedman A., Giardini D., Woodhouse J.H., Global Seismicity of 1982: Centroid Moment-tensor Solutions for 308 Earthquakes, Phys. Earth Planet. Inter., 33, pp. 76-90, (1983)
[6]  
Dziewonski A.M., Friedman A., Woodhouse J.H., Centroid Moment-tensor Solutions for January–March 1983, Phys. Earth Planet. Inter., 33, pp. 71-75, (1983)
[7]  
Dziewonski A.M., Franzen J.E., Woodhouse J.H., Centroid Moment-tensor Solutions for April–June 1983, Phys. Earth Planet. Inter., 33, pp. 243-249, (1983)
[8]  
Dziewonski A.M., Franzen J.E., Woodhouse J.H., Centroid Moment-tensor Solutions for July–September 1983, Phys. Earth Planet. Inter., 34, pp. 1-8, (1984)
[9]  
Dziewonski A.M., Franzen J.E., Woodhouse J.H., Centroid Moment-tensor Solutions for October–December 1983, Phys. Earth Planet. Inter., 34, pp. 129-136, (1984)
[10]  
Dziewonski A.M., Franzen J.E., Woodhouse J.H., Centroid Moment-tensor Solutions for January–March 1984, Phys. Earth Planet. Inter., 34, pp. 209-219, (1984)