ITERATIONS OF CONTINUOUS MAPPINGS ON METRIC SPACES - ASYMPTOTIC STABILITY AND LYAPUNOV FUNCTIONS

被引:5
作者
GREGORIUS, HR
ZIEHE, M
机构
[1] Lehrstuhl für Forstgenetik und Forstpflanzenzüchbung der Universität Göttin-gen, Ulm, Büsgenweg 2
关键词
D O I
10.1080/00207727908941626
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
The stability of difference equations, which represent discrete-time motions, is studied on general metric spaces. An analogous theorem to the equivalence between the asymptotic stability of invariant sets and the existence of Lyapunov functions for continuous-time motions is proved. One consequence of the results is the reduction of the asymptotic stability to an invariance condition. © 1979 Taylor & Francis Group, LLC.
引用
收藏
页码:855 / 862
页数:8
相关论文
共 14 条
[1]  
[Anonymous], 1977, THEORIES POPULATIONS
[2]  
Bhatia N.P., 1970, STABILITY THEORY DYN
[3]   DOMAINS OF STABILITY AND RESILIENCE FOR BIOLOGICAL POPULATIONS OBEYING DIFFERENCE EQUATIONS [J].
DIAMOND, P .
JOURNAL OF THEORETICAL BIOLOGY, 1976, 61 (02) :287-306
[4]  
Diamond P., 1976, Journal of the Australian Mathematical Society, Series A (Pure Mathematics), V22, P177
[5]  
EDREI A, 1951, J LOND MATH SOC, V26, P96
[6]  
FRIEDLANDER FG, 1950, P CAMB PHILOS SOC, V46, P46
[7]   UBER DIE ANWENDUNG DER METHODE VON LJAPUNOV AUF DIFFERENZENGLEICHUNGEN [J].
HAHN, W .
MATHEMATISCHE ANNALEN, 1958, 136 (05) :430-441
[8]  
HAHN W, 1966, STABILITY MOTION
[9]  
Hurt J., 1967, SIAM Journal on Numerical Analysis, V4, P582, DOI 10.1137/0704053
[10]   CONCERNING CONVERGENCE OF ITERATES TO FIXED POINTS [J].
KITCHEN, JW .
STUDIA MATHEMATICA, 1966, 27 (03) :247-&