ITERATIVE METHODS FOR A CLASS OF COMPLEMENTARITY-PROBLEMS

被引:14
作者
NOOR, MA [1 ]
机构
[1] KING SAUD UNIV,COLL SCI,DEPT MATH,RIYADH,SAUDI ARABIA
关键词
MATHEMATICAL TRANSFORMATIONS;
D O I
10.1016/0022-247X(88)90408-8
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We propose and study an algorithm for a new class of complementarity problems of finding u an element of R**n such that u greater than equivalent to 0, Tu plus A(u) greater than equivalent to 0; (u, Tu plus A(u)) equals 0, where T is a continuous mapping and A is a nonlinear transformation from R**n into itself. It is proved that the approximate solution obtained from the iterative scheme converges to the exact solution. Several special cases are also discussed.
引用
收藏
页码:366 / 382
页数:17
相关论文
共 43 条
[1]   NEWTONS METHOD FOR LINEAR COMPLEMENTARITY-PROBLEMS [J].
AGANAGIC, M .
MATHEMATICAL PROGRAMMING, 1984, 28 (03) :349-362
[2]  
AGANAGIC M, 1978, SOL7811 STANF U DEP
[4]  
AHN BH, 1983, MATH PROGRAM, V26, P295, DOI 10.1007/BF02591868
[5]  
Baiocchi C., 1984, VARIATIONAL QUASI VA
[6]  
Chan T. F., 1978, STANCS78674 STANF U
[8]   NUMERICAL METHODS OF HIGH-ORDER ACCURACY FOR NONLINEAR BOUNDARY VALUE PROBLEMS .V. MONOTONE OPERATOR THEORY [J].
CIARLET, PG ;
SCHULTZ, MH ;
VARGA, RS .
NUMERISCHE MATHEMATIK, 1969, 13 (01) :51-&
[9]  
Cottle R.W., 1968, LINEAR ALGEBRA APPL, V1, P103, DOI DOI 10.1016/0024-3795(68)90052-9
[10]  
Cottle RW, 1976, S MATH, V19, P177