SOLVENT, COUNTERION, AND SECONDARY DEUTERIUM KINETIC ISOTOPE EFFECTS IN THE ANIONIC OXY-COPE REARRANGEMENT

被引:29
作者
GAJEWSKI, JJ
GEE, KR
机构
[1] Department of Chemistry, Indiana University, Bloomington
关键词
D O I
10.1021/ja00003a033
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
The potassium and sodium alkoxides of 3-methyl-1,5-hexadien-3-ol follow first-order kinetics in the process of undergoing the anionic oxy-Cope rearrangement in tetrahydrofuran (THF) and dimethyl sulfoxide (DMSO). The first-order rate constant for the rearrangement of the potassium alkoxide in DMSO is ca. 1000 times faster than that in THF, as is the first-order rate constant in THF in the presence of 1 equiv or excess 18-crown-6. The rate constants in THF are independent of initial alkoxide concentration; in contrast, the first-order rate constants in DMSO are inversely proportional to the initial alkoxide concentration, and addition of potassium salts to the DMSO solution results in a retardation of rearrangement rate. Addition of 1/4 and 1/2 equiv of 18-crown-6 in THF gave first-order behavior only over the first 25% of reaction with an initial rate constant linearly related to that with 1 equiv of crown ether. Secondary deuterium kinetic isotope effects have been determined at the bond-breaking and bond-making sites in the Cope rearrangement of the potassium alkoxide in THF, in THF in the presence of 18-crown-6, and in DMSO. The isotope effects indicate a highly dissociative transition state with substantial bond breaking of the C3-C4 bond and little bond making between the allylic termini (C1 and C6). The effects of aggregation and ionic dissociation are discussed in the context of mechanistic pathways proposed for the rearrangement in THF and in DMSO.
引用
收藏
页码:967 / 971
页数:5
相关论文
共 37 条