GRADED SOLUTIONS OF THE YANG-BAXTER RELATION AND LINK POLYNOMIALS
被引:50
作者:
DEGUCHI, T
论文数: 0引用数: 0
h-index: 0
机构:KANAGAWA UNIV, INST PHYS, KANAGAWA KU, YOKOHAMA 221, JAPAN
DEGUCHI, T
AKUTSU, Y
论文数: 0引用数: 0
h-index: 0
机构:KANAGAWA UNIV, INST PHYS, KANAGAWA KU, YOKOHAMA 221, JAPAN
AKUTSU, Y
机构:
[1] KANAGAWA UNIV, INST PHYS, KANAGAWA KU, YOKOHAMA 221, JAPAN
[2] UNIV TOKYO, COLL ARTS & SCI, INST PHYS, MEGURO KU, TOKYO 153, JAPAN
来源:
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL
|
1990年
/
23卷
/
11期
关键词:
D O I:
10.1088/0305-4470/23/11/014
中图分类号:
O4 [物理学];
学科分类号:
0702 ;
摘要:
From a family of graded solvable models the authors derive representations of the braid group associated with the Lie superalgebra gl(M mod N) and give explicitly a general form of the Markov traces on the representations. The braid operators thus obtained satisfy the Hecke algebra. The authors construct composite solvable models and obtain link polynomials from the braid operators for the composite models.