PLATEAU ONSET FOR CORRELATION DIMENSION - WHEN DOES IT OCCUR

被引:142
作者
DING, MZ
GREBOGI, C
OTT, E
SAUER, T
YORKE, JA
机构
[1] FLORIDA ATLANTIC UNIV,DEPT MATH,BOCA RATON,FL 33431
[2] UNIV MARYLAND,PLASMA RES LAB,COLL PK,MD 20742
[3] UNIV MARYLAND,DEPT MATH,COLL PK,MD 20742
[4] UNIV MARYLAND,INST PHYS SCI & TECHNOL,COLL PK,MD 20742
[5] UNIV MARYLAND,DEPT PHYS,COLL PK,MD 20742
[6] UNIV MARYLAND,DEPT ELECT ENGN,COLL PK,MD 20742
[7] GEORGE MASON UNIV,DEPT MATH SCI,FAIRFAX,VA 22030
关键词
D O I
10.1103/PhysRevLett.70.3872
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Chaotic experimental systems are often investigated using delay coordinates. Estimated values of the correlation dimension in delay coordinate space typically increase with the number of delays and eventually reach a plateau (on which the dimension estimate is relatively constant) whose value is commonly taken as an estimate of the correlation dimension D2 of the underlying chaotic attractor. We report a rigorous result which implies that, for long enough data sets, the plateau begins when the number of delay coordinates first exceeds D2. Numerical experiments are presented. We also discuss how lack of sufficient data can produce results that seem to be inconsistent with the theoretical prediction.
引用
收藏
页码:3872 / 3875
页数:4
相关论文
共 30 条
  • [1] CHARACTERIZATION OF EXPERIMENTAL (NOISY) STRANGE ATTRACTORS
    BENMIZRACHI, A
    PROCACCIA, I
    GRASSBERGER, P
    [J]. PHYSICAL REVIEW A, 1984, 29 (02): : 975 - 977
  • [2] STRANGE ATTRACTORS IN WEAKLY TURBULENT COUETTE-TAYLOR FLOW
    BRANDSTATER, A
    SWINNEY, HL
    [J]. PHYSICAL REVIEW A, 1987, 35 (05): : 2207 - 2220
  • [3] CAPUTO JG, 1986, DIMENSIONS ENTROPIES
  • [4] CAPUTO JG, 1989, MEASURES COMPLEXITY
  • [5] DING M, IN PRESS PHYSICA A D
  • [6] ERGODIC-THEORY OF CHAOS AND STRANGE ATTRACTORS
    ECKMANN, JP
    RUELLE, D
    [J]. REVIEWS OF MODERN PHYSICS, 1985, 57 (03) : 617 - 656
  • [7] FUNDAMENTAL LIMITATIONS FOR ESTIMATING DIMENSIONS AND LYAPUNOV EXPONENTS IN DYNAMIC-SYSTEMS
    ECKMANN, JP
    RUELLE, D
    [J]. PHYSICA D, 1992, 56 (2-3): : 185 - 187
  • [8] GERSHENFELD NA, 1992, PHYSICA D, V55, P155
  • [9] MEASURING THE STRANGENESS OF STRANGE ATTRACTORS
    GRASSBERGER, P
    PROCACCIA, I
    [J]. PHYSICA D, 1983, 9 (1-2): : 189 - 208
  • [10] ESTIMATION OF THE KOLMOGOROV-ENTROPY FROM A CHAOTIC SIGNAL
    GRASSBERGER, P
    PROCACCIA, I
    [J]. PHYSICAL REVIEW A, 1983, 28 (04): : 2591 - 2593