WEAK-CONVERGENCE AND EFFICIENT DENSITY-ESTIMATION AT A POINT

被引:38
作者
KRIEGER, AM
PICKANDS, J
机构
关键词
D O I
10.1214/aos/1176345586
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
引用
收藏
页码:1066 / 1078
页数:13
相关论文
共 14 条
[1]  
[Anonymous], ANN I STAT MATH
[2]  
BHATTACHARYA PK, 1967, SANKHYA SER A, V29, P373
[3]   SOME GLOBAL MEASURES OF DEVIATIONS OF DENSITY-FUNCTION ESTIMATES [J].
BICKEL, PJ ;
ROSENBLA.M .
ANNALS OF STATISTICS, 1973, 1 (06) :1071-1095
[4]  
Breiman L., 1968, PROBABILITY
[5]   BEST OBTAINABLE ASYMPTOTIC RATES OF CONVERGENCE IN ESTIMATION OF A DENSITY-FUNCTION AT A POINT [J].
FARRELL, RH .
ANNALS OF MATHEMATICAL STATISTICS, 1972, 43 (01) :170-&
[6]   ON NON-PARAMETRIC ESTIMATES OF DENSITY FUNCTIONS AND REGRESSION CURVES [J].
NADARAYA, EA .
THEORY OF PROBILITY AND ITS APPLICATIONS,USSR, 1965, 10 (01) :186-&
[7]  
PARZEN E, 1962, ANN MATH STATIST, V40, P854
[8]   REMARKS ON SOME NONPARAMETRIC ESTIMATES OF A DENSITY-FUNCTION [J].
ROSENBLATT, M .
ANNALS OF MATHEMATICAL STATISTICS, 1956, 27 (03) :832-837
[9]   QUADRATIC MEASURE OF DEVIATION OF 2-DIMENSIONAL DENSITY ESTIMATES AND A TEST OF INDEPENDENCE [J].
ROSENBLATT, M .
ANNALS OF STATISTICS, 1975, 3 (01) :1-14
[10]   ASYMPTOTICALLY OPTIMUM KERNELS FOR DENSITY-ESTIMATION AT A POINT [J].
SACKS, J ;
YLVISAKER, D .
ANNALS OF STATISTICS, 1981, 9 (02) :334-346