THE LARGEST LIAPUNOV EXPONENT FOR RANDOM MATRICES AND DIRECTED POLYMERS IN A RANDOM ENVIRONMENT

被引:10
作者
ECKMANN, JP [1 ]
WAYNE, CE [1 ]
机构
[1] PENN STATE UNIV,DEPT MATH,UNIVERSITY PK,PA 16802
关键词
D O I
10.1007/BF01218629
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
引用
收藏
页码:147 / 175
页数:29
相关论文
共 9 条
[1]  
BOUCHARD JP, 1986, J PHYS A, V19, pL1452
[2]   THE STABILITY OF LARGE RANDOM MATRICES AND THEIR PRODUCTS [J].
COHEN, JE ;
NEWMAN, CM .
ANNALS OF PROBABILITY, 1984, 12 (02) :283-310
[3]   LIAPUNOV SPECTRA FOR INFINITE CHAINS OF NONLINEAR OSCILLATORS [J].
ECKMANN, JP ;
WAYNE, CE .
JOURNAL OF STATISTICAL PHYSICS, 1988, 50 (5-6) :853-878
[4]  
IMBRIE JZ, DIRECTED POLYM RANDO
[5]   DISTRIBUTION OF CHARACTERISTIC EXPONENTS IN THE THERMODYNAMIC LIMIT [J].
LIVI, R ;
POLITI, A ;
RUFFO, S .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1986, 19 (11) :2033-2040
[6]  
Newman C.M., 1986, RANDOM MATRICES THEI, V50, P121
[7]   SCALING LAW AND ASYMPTOTIC-DISTRIBUTION OF LYAPUNOV EXPONENTS IN CONSERVATIVE DYNAMIC-SYSTEMS WITH MANY DEGREES OF FREEDOM [J].
PALADIN, G ;
VULPIANI, A .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1986, 19 (10) :1881-1888
[8]  
RUELLE D., 1979, ERGODIC THEORY DIFFE, V50, P275
[9]  
Spitzer F., 1976, PRINCIPLES RANDOM WA