COMPUTATIONAL STUDY ON THE INTERACTION BETWEEN A VORTEX AND A SHOCK-WAVE

被引:45
作者
MEADOWS, KR [1 ]
KUMAR, A [1 ]
HUSSAINI, MY [1 ]
机构
[1] NASA,LANGLEY RES CTR,INST COMP APPL SCI & ENGN,HAMPTON,VA 23665
关键词
Aircraft - Aerodynamics - Mathematical Techniques - Numerical Methods - Shock Waves;
D O I
10.2514/3.59916
中图分类号
V [航空、航天];
学科分类号
08 ; 0825 ;
摘要
A computational study of two-dimensional shock vortex interaction is discussed in this paper. A second-order upwind finite volume method is used to solve the Euler equations in conservation form. In this method, the shock wave is captured rather than fitted so that the cases where shock vortex interaction may cause secondary shocks can also be investigated. The effects of vortex strength on the computed flow and acoustic field generated by the interaction are qualitatively evaluated.
引用
收藏
页码:174 / 179
页数:6
相关论文
共 20 条
[1]  
Anderson D. A., 2020, COMPUTATIONAL FLUID, VFourth
[2]  
ANDERSON WK, 1985, AIAA850122 PAP
[3]   INTERACTION OF A STARTING VORTEX AS WELL AS A VORTEX STREET WITH A TRAVELING SHOCK WAVE [J].
DOSANJH, DS ;
WEEKS, TM .
AIAA JOURNAL, 1965, 3 (02) :216-&
[4]  
HOLLINGSWORTH MA, 1956, 18257 AER RES COUNC
[5]  
Hollingsworth MA, 1955, BR AERONAUT RES COUN
[6]   SPECTRAL METHODS FOR THE EULER EQUATIONS .2. TSCHEBYSCHEFF METHODS AND SHOCK FITTING [J].
HUSSAINI, MY ;
KOPRIVA, DA ;
SALAS, MD ;
ZANG, TA .
AIAA JOURNAL, 1985, 23 (02) :234-240
[7]  
KOPRIVA DA, 1988, COMPUTATIONAL ACOUST, V2
[8]  
KOPRIVA DA, 1983, 5TH P GAMM C NUM MET, P185
[9]  
MOORE FK, 1954, NACA1165 REPT
[10]  
NAUMANN A, 1973, AGARDCP131