GEOMETRIC GRAVITATIONAL FORCE ON PARTICLES MOVING IN A LINE

被引:24
作者
CANGEMI, D [1 ]
JACKIW, R [1 ]
机构
[1] MIT,DEPT PHYS,CAMBRIDGE,MA 02139
关键词
D O I
10.1016/0370-2693(93)90878-L
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
In two-dimensional space-time, point particles can experience a geometric, dimension-specific gravity force, which modifies the usual geodesic equation of motion and provides a link between the cosmological constant and the vacuum theta-angle. The description of such a force fits naturally into a gauge theory of gravity based on the extended Poincare group, i.e. ''string-inspired'' dilaton gravity.
引用
收藏
页码:24 / 29
页数:6
相关论文
共 14 条
[1]  
AUCHUCARRO A, 1992, TUFTS U PREPRINT
[2]   HIDDEN CONSTANTS - THE THETA-PARAMETER OF QCD AND THE COSMOLOGICAL CONSTANT OF N=8 SUPERGRAVITY [J].
AURILIA, A ;
NICOLAI, H ;
TOWNSEND, PK .
NUCLEAR PHYSICS B, 1980, 176 (02) :509-522
[3]   EVANESCENT BLACK-HOLES [J].
CALLAN, CG ;
GIDDINGS, SB ;
HARVEY, JA ;
STROMINGER, A .
PHYSICAL REVIEW D, 1992, 45 (04) :R1005-R1009
[4]  
CANGEMI D, 1992, CTP2124 MIT PREPR
[5]   MORE ABOUT MASSIVE SCHWINGER MODEL [J].
COLEMAN, S .
ANNALS OF PHYSICS, 1976, 101 (01) :239-267
[6]  
FUKIYAMA T, 1985, PHYS LETT B, V160, P259
[7]  
GRIGNANI G, 1992, DFUPG571992 PER U PR
[8]   GAUGE-THEORY OF TWO-DIMENSIONAL QUANTUM-GRAVITY [J].
ISLER, K ;
TRUGENBERGER, CA .
PHYSICAL REVIEW LETTERS, 1989, 63 (08) :834-836
[9]   LOWER DIMENSIONAL GRAVITY [J].
JACKIW, R .
NUCLEAR PHYSICS B, 1985, 252 (1-2) :343-356
[10]  
Jackiw R., 1984, QUANTUM THEORY GRAVI