EXACT SOLUTION OF THE ROW-CONVEX POLYGON PERIMETER GENERATING FUNCTION

被引:32
作者
BRAK, R
GUTTMANN, AJ
ENTING, IG
机构
[1] Dept. of Math., Melbourne Univ., Parkville, Vic.
来源
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL | 1990年 / 23卷 / 12期
关键词
D O I
10.1088/0305-4470/23/12/016
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
An explicit expression is obtained for the perimeter generating function G(y)= Sigma n>or=2 any2n for row-convex polygons on the square lattice, where an is the number of 2n step row-convex polygons. An asymptotic expression for an approximately A mu nn-3/2 is obtained, where mu =3+22 and A are given. The authors also show that the generating function is an algebraic function and that it satisfies an inhomogeneous linear differential equation of degree three.
引用
收藏
页码:2319 / 2326
页数:8
相关论文
共 13 条
[1]  
DELEST MP, 1984, THEOR COMPUT SCI, V34, P3377
[2]   POLYGONS ON THE HONEYCOMB LATTICE [J].
ENTING, IG ;
GUTTMANN, AJ .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1989, 22 (09) :1371-1384
[3]  
FORSYTH AR, 1902, THEORY DIFFERENTIA 3, V4
[4]   THE NUMBER OF CONVEX POLYGONS ON THE SQUARE AND HONEYCOMB LATTICES [J].
GUTTMANN, AJ ;
ENTING, IG .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1988, 21 (08) :L467-L474
[5]   THE SIZE AND NUMBER OF RINGS ON THE SQUARE LATTICE [J].
GUTTMANN, AJ ;
ENTING, IG .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1988, 21 (03) :L165-L172
[6]   THE NUMBER OF CONVEX POLYOMINOS WITH GIVEN PERIMETER [J].
KIM, D .
DISCRETE MATHEMATICS, 1988, 70 (01) :47-51
[7]   RIGOROUS RESULTS FOR THE NUMBER OF CONVEX POLYGONS ON THE SQUARE AND HONEYCOMB LATTICES [J].
LIN, KY ;
CHANG, SJ .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1988, 21 (11) :2635-2642
[9]   EXACT CRITICAL-POINT AND CRITICAL EXPONENTS OF O(N) MODELS IN 2 DIMENSIONS [J].
NIENHUIS, B .
PHYSICAL REVIEW LETTERS, 1982, 49 (15) :1062-1065
[10]  
Polya G, 1969, J COMB THEORY, V6, P102