STABILITY OF MATTER

被引:17
作者
THIRRING, W
机构
[1] Institut für Theoretische Physik, Universität Wien, Vienna, A-1090
关键词
D O I
10.1007/BF00731855
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
A Hamiltonian which is bounded from below by a multiple of the number of particles is called stable. We discuss which interactions are stable and which are not. Furthermore we show how this stability is related to other notions of stability. © 1990 Plenum Publishing Corporation.
引用
收藏
页码:1103 / 1110
页数:8
相关论文
共 28 条
[1]   ON THOMAS-FERMI-VONWEIZSACKER AND HARTREE ENERGIES AS FUNCTIONS OF THE DEGREE OF IONIZATION [J].
BAUMGARTNER, B .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1984, 17 (08) :1593-1602
[2]  
Chandrasekhar S., 1931, MON NOT R ASTRON SOC, V91, P456
[3]  
COLON J, 1984, COMMUN MATH PHYS, V94, P439
[4]   COLLAPSING SYSTEMS [J].
COMPAGNER, A ;
BRUIN, C ;
ROELSE, A .
PHYSICAL REVIEW A, 1989, 39 (11) :5989-6002
[5]   ONE-ELECTRON RELATIVISTIC MOLECULES WITH COULOMB INTERACTION [J].
DAUBECHIES, I ;
LIEB, EH .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1983, 90 (04) :497-510
[6]   STABILITY OF MATTER .I. [J].
DYSON, FJ ;
LENARD, A .
JOURNAL OF MATHEMATICAL PHYSICS, 1967, 8 (03) :423-&
[7]  
DYSON FJ, 1952, PHYS REV, V85, P613
[8]  
Fefferman C., 1986, REV MAT IBEROAM, V2, P119
[9]   STABILITY OF MANY-PARTICLE SYSTEMS [J].
FISHER, ME ;
RUELLE, D .
JOURNAL OF MATHEMATICAL PHYSICS, 1966, 7 (02) :260-&
[10]   SOLUBLE MODEL FOR A SYSTEM WITH NEGATIVE SPECIFIC HEAT [J].
HERTEL, P ;
THIRRING, W .
ANNALS OF PHYSICS, 1971, 63 (02) :520-&