MEHLER-PEROXIDASE REACTION MEDIATES ZEAXANTHIN FORMATION AND ZEAXANTHIN-RELATED FLUORESCENCE QUENCHING IN INTACT CHLOROPLASTS

被引:122
作者
NEUBAUER, C [1 ]
YAMAMOTO, HY [1 ]
机构
[1] UNIV HAWAII MANOA, DEPT PLANT MOLEC PHYSIOL, HONOLULU, HI 96822 USA
关键词
D O I
10.1104/pp.99.4.1354
中图分类号
Q94 [植物学];
学科分类号
071001 ;
摘要
Induction of zeaxanthin formation and the associated nonphotochemical quenching in iodoacetamide-treated, non-CO2-fixing intact chloroplasts of Lactuca sativa L. cv Romaine is reported. The electron transport needed to generate the required DELTA-pH for zeaxanthin formation and nonphotochemical quenching are ascribed to the Mehler-ascorbate peroxidase reaction. KCN, an inhibitor of ascorbate peroxidase, significantly affected these activities without affecting linear electron transport to methyl viologen or violaxanthin deepoxidase activity. At 1 millimolar KCN, zeaxanthin formation and DELTA-pH were inhibited 60 and 55%, respectively, whereas ascorbate peroxidase activity was inhibited almost totally. The KCN-resistant activity, which apparently was due to electron transport mediated by the Mehler reaction alone, however, was insufficient to support a high level of nonphotochemical quenching. We suggest that in vivo, as CO2 fixation becomes limiting, the Mehler-peroxidase reaction protects photosystem II against the excess light by supporting the electron transport needed for zeaxanthin-dependent nonphotochemical quenching and concomitantly scavenging H2O2. Ascorbate is essential for this process to occur.
引用
收藏
页码:1354 / 1361
页数:8
相关论文
共 31 条
[1]  
ASADA K, 1990, PLANT CELL PHYSIOL, V31, P557
[2]   ASSAY AND INHIBITORS OF SPINACH SUPEROXIDE-DISMUTASE [J].
ASADA, K ;
TAKAHASHI, M ;
NAGATE, M .
AGRICULTURAL AND BIOLOGICAL CHEMISTRY, 1974, 38 (02) :471-473
[3]  
Asada K., 1987, PHOTOINHIBITION TOPI, P227
[4]  
BADGER MR, 1985, ANNU REV PLANT PHYS, V36, P27, DOI 10.1146/annurev.arplant.36.1.27
[5]   ROLE OF THE XANTHOPHYLL CYCLE IN PHOTOPROTECTION ELUCIDATED BY MEASUREMENTS OF LIGHT-INDUCED ABSORBENCY CHANGES, FLUORESCENCE AND PHOTOSYNTHESIS IN LEAVES OF HEDERA-CANARIENSIS [J].
BILGER, W ;
BJORKMAN, O .
PHOTOSYNTHESIS RESEARCH, 1990, 25 (03) :173-185
[6]   QUANTITATIVE STUDY OF THE SLOW DECLINE OF CHLOROPHYLL ALPHA-FLUORESCENCE IN ISOLATED-CHLOROPLASTS [J].
BRIANTAIS, JM ;
VERNOTTE, C ;
PICAUD, M ;
KRAUSE, GH .
BIOCHIMICA ET BIOPHYSICA ACTA, 1979, 548 (01) :128-138
[7]   PHOTOINHIBITION AND ZEAXANTHIN FORMATION IN INTACT LEAVES - A POSSIBLE ROLE OF THE XANTHOPHYLL CYCLE IN THE DISSIPATION OF EXCESS LIGHT ENERGY [J].
DEMMIG, B ;
WINTER, K ;
KRUGER, A ;
CZYGAN, FC .
PLANT PHYSIOLOGY, 1987, 84 (02) :218-224
[8]   CAROTENOIDS AND PHOTOPROTECTION IN PLANTS - A ROLE FOR THE XANTHOPHYLL ZEAXANTHIN [J].
DEMMIGADAMS, B .
BIOCHIMICA ET BIOPHYSICA ACTA, 1990, 1020 (01) :1-24
[9]  
FOYER CH, 1989, PLANT PHYSIOL BIOCH, V27, P751
[10]   ZEAXANTHIN FORMATION AND ENERGY-DEPENDENT FLUORESCENCE QUENCHING IN PEA-CHLOROPLASTS UNDER ARTIFICIALLY MEDIATED LINEAR AND CYCLIC ELECTRON-TRANSPORT [J].
GILMORE, AM ;
YAMAMOTO, HY .
PLANT PHYSIOLOGY, 1991, 96 (02) :635-643