A DYNAMICAL SYSTEM WITH HOPF BIFURCATIONS AND CATASTROPHES

被引:19
作者
MURATORI, S [1 ]
RINALDI, S [1 ]
机构
[1] POLITECN MILAN, DEPT ELECTR, I-20133 MILAN, ITALY
关键词
D O I
10.1016/0096-3003(89)90036-2
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
引用
收藏
页码:1 / 15
页数:15
相关论文
共 19 条
[1]  
ABRAHAM RH, 1985, LECTURE NOTES PURE A, V98
[2]   STABLE LIMIT CYCLES IN PREY-PREDATOR POPULATIONS [J].
ALBRECHT, F ;
GATZKE, H ;
WAX, N .
SCIENCE, 1973, 181 (4104) :1073-1074
[3]   DYNAMICS OF 2 INTERACTING POPULATIONS [J].
ALBRECHT, F ;
GATZKE, H ;
HADDAD, A ;
WAX, N .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1974, 46 (03) :658-670
[4]  
Casti J., 1979, CONNECTIVITY COMPLEX
[5]   UNIQUENESS OF A LIMIT-CYCLE FOR A PREDATOR-PREY SYSTEM [J].
CHENG, KS .
SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 1981, 12 (04) :541-548
[6]   STABILITY ANALYSIS OF PREDATOR-PREY MODELS VIA LIAPUNOV METHOD [J].
GATTO, M ;
RINALDI, S .
BULLETIN OF MATHEMATICAL BIOLOGY, 1977, 39 (03) :339-347
[7]   ENRICHED PREDATOR-PREY SYSTEMS - THEORETICAL STABILITY [J].
ROSENZWEIG, ML .
SCIENCE, 1972, 177 (4052) :904-+
[8]  
Goh B., 1980, MANAGEMENT ANAL BIOL, P9
[9]  
HAHN W, 1963, THEORY APPLICATION L
[10]  
Holling C. S., 1965, Mem ent Soc Canada Ottawa, Vno. 45, P1