THE NUMBER OF EXTREME-POINTS IN THE CONVEX-HULL OF A RANDOM SAMPLE

被引:32
作者
ALDOUS, DJ
FRISTEDT, B
GRIFFIN, PS
PRUITT, WE
机构
[1] UNIV MINNESOTA,SCH MATH,MINNEAPOLIS,MN 55455
[2] SYRACUSE UNIV,DEPT MATH,SYRACUSE,NY 13210
关键词
LIMIT DISTRIBUTION; MEAN; VARIANCE;
D O I
10.2307/3214867
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Let {X(k)} be an i.i.d. sequence taking values in R2 with the radial and spherical components independent and the radial component having a distribution with slowly varying tail. The number of extreme points in the convex hull of {X(l),..., X(n)} is shown to have a limiting distribution which is obtained explicitly. Precise information about the mean and variance of the limit distribution is obtained.
引用
收藏
页码:287 / 304
页数:18
相关论文
共 10 条
[1]   ON LIMITING LAWS FOR THE CONVEX-HULL OF A SAMPLE [J].
BROZIUS, H ;
DEHAAN, L .
JOURNAL OF APPLIED PROBABILITY, 1987, 24 (04) :852-862
[2]   CONVEX HULLS OF POINTS DISTRIBUTED BY ROTATIONAL SYMMETRY [J].
CARNAL, H .
ZEITSCHRIFT FUR WAHRSCHEINLICHKEITSTHEORIE UND VERWANDTE GEBIETE, 1970, 15 (02) :168-&
[3]  
DAVIS R, 1987, COMM STAT STOCHASTIC, V3, P1
[4]   THE CONVEX-HULL OF A SPHERICALLY SYMMETRIC SAMPLE [J].
EDDY, WF ;
GALE, JD .
ADVANCES IN APPLIED PROBABILITY, 1981, 13 (04) :751-763
[5]  
EFRON B, 1965, BIOMETRIKA, V52, P331, DOI 10.2307/2333687
[6]   LIMIT-THEOREMS FOR CONVEX HULLS [J].
GROENEBOOM, P .
PROBABILITY THEORY AND RELATED FIELDS, 1988, 79 (03) :327-368
[7]   COVERAGE PROBLEMS AND RANDOM CONVEX HULLS [J].
JEWELL, NP ;
ROMANO, JP .
JOURNAL OF APPLIED PROBABILITY, 1982, 19 (03) :546-561
[8]  
MALLER RA, 1984, P LOND MATH SOC, V49, P385
[9]  
Renyi A., 1963, Z WAHRSCHEINLICHKEIT, V2, P75, DOI DOI 10.1007/BF00535300
[10]  
Wendel JG., 1963, MATH SCAND, V11, P109