FRACTIONAL DIFFUSION EQUATION ON FRACTALS - 3-DIMENSIONAL CASE AND SCATTERING FUNCTION

被引:80
作者
ROMAN, HE [1 ]
GIONA, M [1 ]
机构
[1] UNIV ROME LA SAPIENZA,DEPT CHEM ENGN,I-00184 ROME,ITALY
来源
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL | 1992年 / 25卷 / 08期
关键词
D O I
10.1088/0305-4470/25/8/024
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
A fractional equation for diffusion in isotropic and homogeneous fractal structures is discussed. It generalizes the fractional diffusion equation valid for d-dimensional Euclidean systems. The asymptotic behaviour of the probability density function is obtained exactly. Analytical expressions are derived for the scattering and relaxation functions, which can be studied by x-ray and neutron scattering experiments on fractals.
引用
收藏
页码:2107 / 2117
页数:11
相关论文
共 9 条
  • [1] ALEXANDER S, 1982, J PHYSIQUE LETT, V43, P2625
  • [2] [Anonymous], 1991, FRACTALS DISORDERED
  • [3] MULTIFRACTAL FEATURES OF RANDOM-WALKS ON RANDOM FRACTALS
    BUNDE, A
    HAVLIN, S
    ROMAN, HE
    [J]. PHYSICAL REVIEW A, 1990, 42 (10): : 6274 - 6277
  • [4] FRACTIONAL DIFFUSION EQUATION ON FRACTALS - ONE-DIMENSIONAL CASE AND ASYMPTOTIC-BEHAVIOR
    GIONA, M
    ROMAN, HE
    [J]. JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1992, 25 (08): : 2093 - 2105
  • [5] DIFFUSION IN DISORDERED MEDIA
    HAVLIN, S
    BENAVRAHAM, D
    [J]. ADVANCES IN PHYSICS, 1987, 36 (06) : 695 - 798
  • [6] March N. H., 1976, ATOMIC DYNAMICS LIQU
  • [7] Oldham KB, 1974, MATH GAZ
  • [8] ROMAN HE, 1990, RELAXATION COMPLEX S
  • [9] ANOMALOUS DIFFUSION OF HYDROGEN IN AMORPHOUS METALS
    SCHIRMACHER, W
    PREM, M
    SUCK, JB
    HEIDEMANN, A
    [J]. EUROPHYSICS LETTERS, 1990, 13 (06): : 523 - 529