CONSTRAINT DECOMPOSITION ALGORITHMS IN GLOBAL OPTIMIZATION

被引:11
作者
HORST, R [1 ]
VANTHOAI, N [1 ]
机构
[1] UNIV TRIER,FACHBEREICH MATH 4,D-54286 TRIER,GERMANY
关键词
GLOBAL OPTIMIZATION; DECOMPOSITION; CANONICAL DC PROGRAM; CONICAL BRANCH AND BOUND ALGORITHMS; OUTER APPROXIMATION; CUTTING PLANE ALGORITHMS;
D O I
10.1007/BF01096683
中图分类号
C93 [管理学]; O22 [运筹学];
学科分类号
070105 ; 12 ; 1201 ; 1202 ; 120202 ;
摘要
Many global optimization problems can be formulated in the form min{c(x, y): x is-an-element-of X, y is-an-element-of Y, (x, y) is-an-element-of Z, y is-an-element-of G} where X, Y are polytopes in R(p), R(n), respectively, Z is a closed convex set in R(p+n), while G is the complement of an open convex set in R(n). The function c:R(p+n) --> R is assumed to be linear. Using the fact that the nonconvex constraints depend only upon the y-variables, we modify and combine basic global optimization techniques such that some new decomposition methods result which involve global optimization procedures only in R(n). Computational experiments show that the resulting algorithms work well for problems with small n.
引用
收藏
页码:333 / 348
页数:16
相关论文
共 18 条
[1]   ONLINE AND OFF-LINE VERTEX ENUMERATION BY ADJACENCY LISTS [J].
CHEN, PC ;
HANSEN, P ;
JAUMARD, B .
OPERATIONS RESEARCH LETTERS, 1991, 10 (07) :403-409
[2]   CONCAVE MINIMIZATION VIA CONICAL PARTITIONS AND POLYHEDRAL OUTER APPROXIMATION [J].
HORST, R ;
THOAI, NV ;
BENSON, HP .
MATHEMATICAL PROGRAMMING, 1991, 50 (02) :259-274
[3]  
Horst R., 1990, Annals of Operations Research, V25, P1, DOI 10.1007/BF02283684
[4]  
Horst R., 1992, Optimization, V25, P53, DOI 10.1080/02331939208843807
[5]   CONICAL ALGORITHM FOR THE GLOBAL MINIMIZATION OF LINEARLY CONSTRAINED DECOMPOSABLE CONCAVE MINIMIZATION PROBLEMS [J].
HORST, R ;
THOAI, NV .
JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 1992, 74 (03) :469-486
[6]   OUTER APPROXIMATION BY POLYHEDRAL CONVEX-SETS [J].
HORST, R ;
THOAI, NV ;
TUY, H .
OR SPEKTRUM, 1987, 9 (03) :153-159
[7]   MODIFICATION, IMPLEMENTATION AND COMPARISON OF 3 ALGORITHMS FOR GLOBALLY SOLVING LINEARLY CONSTRAINED CONCAVE MINIMIZATION PROBLEMS [J].
HORST, R ;
THOAI, NV .
COMPUTING, 1989, 42 (2-3) :271-289
[8]  
HORST R, 1993, GLOBAL OPTIMIZATION
[9]  
Horst R., 1992, J GLOBAL OPTIM, V2, P1
[10]  
MUU LD, 1993, MATH PROGRAM, V61, P75