PALLADIUM-CATALYZED HYDROGENATION OF SOYBEAN OIL

被引:26
作者
AHMAD, MM
PRIESTLEY, TM
WINTERBOTTOM, JM
机构
[1] J WALTER THOMPSON LTD,LONDON W1,ENGLAND
[2] UNIV BIRMINGHAM,DEPT CHEM ENGN,BIRMINGHAM B15 2TT,W MIDLANDS,ENGLAND
关键词
D O I
10.1007/BF02660237
中图分类号
O69 [应用化学];
学科分类号
081704 ;
摘要
The hydrogenation of soybean oil has been studied using charcoal-supported palladium catalysts at hydrogen pressures between ambient and 70 psig and at temperatures between 80 C and 160 C in three types of stirred reactor. The catalysts employed were 1-10% w/w Pd supported on charcoal and represented differing metal placement on the support. The structure of the catalysts was confirmed by metal surface area measurements, transmission electron microscopy (TEM) and electron spectroscopy for chemical analysis (ESCA). Comparative studies also were carried out under similar conditions using samples of commercial nickel catalysts. Palladium catalysts with the metal placed on the exterior of the charcoal support were the most active and selective at ambient pressure, and although palladium catalysts with metal placed within the charcoal pore system became the most active at higher hydrogen pressures, only the former type of catalyst retained high selec-tivity over the whole temperature and pressure range. Palladium catalysts gave rise to more trans- acids than nickel, particularly under conditions normally em-ployed with the latter, but if diffusion limitation was avoided, especially at lower temperatures, palladium gave lower quantities of trans- acid than nickel. In addition, the selectivity of a well designed palladium catalyst was superior to that of nickel and its activity was 15-20 times greater. It is concluded that if palladium is deposited on the exterior of the charcoal so that it is accessible to the triglyceride molecules, then its selectivity and activity is superior to that of nickel, even at low temperatures, at which nickel is inactive. This underlines the importance of choosing the correct preparative route to give optimum metal placement, and it is suggested that when previous studies have indicated that palladium is unselective for fat hardening, it is likely that the metal was not dispersed on the exterior surface of the support. Furthermore, whereas nickel is best used under diffusion-controlled conditions because its selectivity is better in the latter situation palladium should be used under diffusion-free conditions, which implies that very careful attention should be paid to the reactor design. © 1979 American Oil Chemists' Society.
引用
收藏
页码:571 / 577
页数:7
相关论文
共 14 条
[1]   CARBON-SUPPORTED PLATINUM METAL CATALYSTS FOR HYDROGENATION REACTIONS - MASS-TRANSPORT EFFECTS IN LIQUID-PHASE HYDROGENATION OVER PD/C [J].
ACRES, GJK ;
COOPER, BJ .
JOURNAL OF APPLIED CHEMISTRY AND BIOTECHNOLOGY, 1972, 22 (06) :769-&
[2]   DIFFUSIVITIES OF HYDROGEN AND GLYCERYL TRIOLEATE IN COTTONSEED OIL AT ELEVATED-TEMPERATURE [J].
ANDERSSON, K ;
HELL, M ;
LOWENDAH.L ;
SCHOON, NH .
JOURNAL OF THE AMERICAN OIL CHEMISTS SOCIETY, 1974, 51 (04) :171-173
[3]  
Bond GC, 1962, CATALYSIS METALS
[4]  
CHUNG CS, UNPUBLISHED
[5]  
COENAN JWE, 1964, 3RD P INT C CAT AMST, V2, P1378
[6]   HYDROGENATION OF EDIBLE OILS [J].
COENEN, JWE .
JOURNAL OF THE AMERICAN OIL CHEMISTS SOCIETY, 1976, 53 (06) :382-389
[7]  
EMMETT PH, 1955, CATALYSIS, V3
[8]  
Rylander P. N., 1970, J AM OIL CHEM SOC, V47, P482
[9]  
Satterfield C. N., 1970, MASS TRANSFER HETERO, P107
[10]  
Van Hardeveld R., 1972, ADV CATAL, V22, P75