ON THE PTAK-YOUNG GENERALIZATION OF THE SCHUR-COHN THEOREM

被引:2
作者
ACKNER, R
KAILATH, T
机构
[1] Information Systems Laboratory, Stanford University, Stanford
关键词
D O I
10.1109/9.256392
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
We give a new proof of the Ptak-Young generalization of the Schur-Cohn theorem which shows that the inertia of a certain generalized Bezoutian matrix determines the root-distribution of a polynomial with respect to the unit disk. We show that the Ptak-Young theorem can also be formulated in terms of a Pick matrix. We also note that the generalized Bezoutian is a structured matrix having a so-called generalized displacement structure.
引用
收藏
页码:1601 / 1604
页数:4
相关论文
共 8 条
[1]  
ACKNER R, IN PRESS SIAM J MATR
[2]   On the number of roots in an algebraic equation for a circle. [J].
Cohn, A .
MATHEMATISCHE ZEITSCHRIFT, 1922, 14 :110-148
[3]  
DELSARTE P, 1986, PHILIPS J RES, V41, P1
[4]  
KAILATH T, UNPUB SIAM J MATRIX
[5]  
MARDEN M, 1949, AM MATH SOC NEW YORP
[6]  
PAL D, IN PRESS SIAM J MATR
[7]   A GENERALIZATION OF THE ZERO LOCATION THEOREM OF SCHUR AND COHN [J].
PTAK, V ;
YOUNG, NJ .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 1980, 25 (05) :978-980
[8]  
SCHUR I, 1917, J REINE ANGEWANDTE M, V147, P202