A PRACTICAL FINITE-ELEMENT APPROXIMATION OF A SEMIDEFINITE NEUMANN PROBLEM ON A CURVED DOMAIN

被引:13
作者
BARRETT, JW [1 ]
ELLIOTT, CM [1 ]
机构
[1] PURDUE UNIV,DEPT MATH,W LAFAYETTE,IN 47907
关键词
D O I
10.1007/BF01399693
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
引用
收藏
页码:23 / 36
页数:14
相关论文
共 11 条
[1]  
[Anonymous], 1967, Les methodes directes en theorie des equations elliptiques
[2]  
Aziz AK., 1972, MATH FDN FINITE ELEM, DOI [10.1016/b978-0-12-068650-6.50020-4, DOI 10.1016/B978-0-12-068650-6.50020-4]
[3]  
Babuka I., 1972, The Mathematical Foundations of the Finite Element with Application to Partial Differential Equations, P3
[4]   A FINITE-ELEMENT METHOD FOR SOLVING ELLIPTIC-EQUATIONS WITH NEUMANN DATA ON A CURVED BOUNDARY USING UNFITTED MESHES [J].
BARRETT, JW ;
ELLIOTT, CM .
IMA JOURNAL OF NUMERICAL ANALYSIS, 1984, 4 (03) :309-325
[5]  
BARRETT JW, IN PRESS IMAJ NUMER
[6]  
BARRETT JW, UNPUB IMAJ NUMER ANA
[7]   NUMERICAL-SOLUTION OF DISCRETE POISSON-NEUMANN PROBLEMS WITH COMPATIBLE OR INCOMPATIBLE DATA, WITH REFERENCE TO FLOW IN A CIRCULAR CAVITY [J].
FERRISS, DH ;
MARTIN, DW .
IMA JOURNAL OF NUMERICAL ANALYSIS, 1985, 5 (01) :79-100
[8]  
Kufner A., 1977, Function Spaces. Mechanics: Analysis
[9]   ON FINITE-ELEMENT METHODS FOR THE NEUMANN PROBLEM [J].
MOLCHANOV, IN ;
GALBA, EF .
NUMERISCHE MATHEMATIK, 1985, 46 (04) :587-598
[10]  
NEDOMA J, 1979, RAIRO-ANAL NUMER-NUM, V13, P257