Human skin has previously been shown to contain at least two genetically distinct types of collagen, type I and III. Here the presence of an additional form of collagen, α1(I)-trimer, is demonstrated. Skin collagen was solubilized by limited pepsin digestion and then fractionated by sequential precipitation with 1.5, 2.5, and 4.0 m NaCl at pH 7.4. The α-chain subunits of collagen were isolated by gel filtration and carboxymethylcellulose chromatography under denaturing conditions. The 1.5 and 2.5 m NaCl precipitates contained predominantly type I collagen with a chain composition of [α1(I)]2α2. In the 1.5 m precipitate a small amount of type III collagen was also recovered. In contrast, the 4.0 m NaCl fraction consisted almost exclusively of α-chains which on the basis of cyanogen bromide peptide mapping were shown to be identical with α1(I). The amino acid composition of these chains was also similar to that of α1(I), except that hydroxylysine was increased and lysine was correspondingly decreased. The content of 3-hydroxyproline was also increased. These results suggest that the α-chains in α1(I)-trimer are the same gene products as α1 in type I collagen, but that the co-translational or post-translational hydroxylation of lysyl residues is more extensive in α1(I)-trimer. Estimation of the quantitative amounts of α1(I)-trimer indicated that this collagen accounts for less than 5% of the total collagen in adult human skin. It is speculated, however, that α1(I)-trimer collagen may play a role in the stability and tensile strength of normal human skin and other tissues, and defects in its biochemistry might be associated with diseases of connective tissue. © 1979.