BOUNDS FOR SORTING BY PREFIX REVERSAL

被引:197
作者
GATES, WH [1 ]
PAPADIMITRIOU, CH [1 ]
机构
[1] UNIV CALIF BERKELEY,DEPT ELECT ENGN,BERKELEY,CA 94720
基金
美国国家科学基金会;
关键词
D O I
10.1016/0012-365X(79)90068-2
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
For a permutation σ of the integers from 1 to n, let f{hook}(σ) be the smallest number of prefix reversals that will transform σ to the identity permutation, and let f{hook}(n) be the largest such f{hook}(σ) for all σ in (the symmetric group) Sn. We show that f{hook}(n)≤ (5n+5) 3, and that f{hook}(n)≥ 17n 16 for n a multiple of 16. If, furthermore, each integer is required to participate in an even number of reversed prefixes, the corresponding function g(n) is shown to obey 3n 2-1≤g(n)≤2n+3. © 1979.
引用
收藏
页码:47 / 57
页数:11
相关论文
共 3 条
[1]  
ROBBINS DP, 1977, COMMUNICATION NOV
[2]  
1977, AM MATH MONTHLY, V84, P296
[3]  
1975, AM MATH MONTHLY, V82, P1010