THE ESSENTIAL SPECTRUM OF NEUMANN LAPLACIANS ON SOME BOUNDED SINGULAR DOMAINS

被引:82
作者
HEMPEL, R
SECO, LA
SIMON, B
机构
[1] California Institute of Technology, Division of Mathematics, Physics and Astronomy, Pasadena
关键词
D O I
10.1016/0022-1236(91)90130-W
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In the present paper we consider Neumann Laplacians on singular domains of the type "rooms and passages" or "combs" and we show that, in typical situations, the essential spectrum can be determined from the geometric data. Moreover, given an arbitrary closed subset S of the non-negative reals, we construct domains Ω = Ω(S) such that the essential spectrum of the Neumann Laplacian on Ω is just this set S. © 1991.
引用
收藏
页码:448 / 483
页数:36
相关论文
共 15 条
[1]  
Adams RA., 2003, PURE APPL MATH SOB O, V2
[2]  
AMICK CJ, 1978, J LOND MATH SOC, V18, P81
[3]  
ARRIETA JM, 1989, EIGENVALUE PROBLEMS
[4]  
COURANT R, 1966, METHODS MATH PHYSICS, V1
[5]  
COURANT R, 1937, METHODEN MATH PHYSIK, V2
[6]  
DEVERDIERE YC, 1987, ANN SCI ECOLE NORM S, V20, P599
[7]   ON THE APPROXIMATION NUMBERS OF SOBOLEV EMBEDDINGS FOR IRREGULAR DOMAINS [J].
EVANS, WD ;
HARRIS, DJ .
QUARTERLY JOURNAL OF MATHEMATICS, 1989, 40 (157) :13-42
[8]  
EVANS WD, 1987, P LOND MATH SOC, V54, P141
[9]  
FLECKINGER J, 1973, CR ACAD SCI A MATH, V276, P913
[10]  
Gilbarg D., 1983, ELLIPTIC PARTIAL DIF