LOCALIZED GALERKIN ESTIMATES FOR BOUNDARY INTEGRAL-EQUATIONS ON LIPSCHITZ-DOMAINS

被引:4
作者
ADOLFSSON, V
GOLDBERG, M
JAWERTH, B
LENNERSTAD, H
机构
[1] UNIV S CAROLINA,DEPT MATH,COLUMBIA,SC 29208
[2] CHALMERS UNIV TECHNOL,DEPT MATH,S-41296 GOTHENBURG,SWEDEN
关键词
GALERKIN METHODS; NONSMOOTH; LIPSCHITZ; DOUBLE LAYER POTENTIAL; SYSTEMS OF EQUATIONS;
D O I
10.1137/0523078
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The Galerkin method is studied for solving the boundary integral equations associated with the Laplace operator on nonsmooth domains. Convergence is established with a condition on the meshsize, which involves the local curvature on certain approximating domains. Error estimates are also proved, and the results are generalized to systems of equations.
引用
收藏
页码:1356 / 1374
页数:19
相关论文
共 16 条
[1]  
[Anonymous], 1969, MATH THEORY VISCOUS
[2]  
BARTA E, MOTION RIGID PARTICL
[3]   CAUCHY INTEGRALS ON LIPSCHITZ CURVES AND RELATED OPERATORS [J].
CALDERON, AP .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1977, 74 (04) :1324-1327
[4]   THE CAUCHY INTEGRAL DEFINES AN OPERATOR ON L2 FOR LIPSCHITZ-CURVES [J].
COIFMAN, RR ;
MCINTOSH, A ;
MEYER, Y .
ANNALS OF MATHEMATICS, 1982, 116 (02) :361-387
[5]  
DAHLBERG B, 1985, 198503ISSN03472809 C
[6]  
DAHLBERG B, 1977, ARCH RATIONAL MECH A, V65, P275
[7]   BOUNDARY-VALUE PROBLEMS FOR THE SYSTEMS OF ELASTOSTATICS IN LIPSCHITZ-DOMAINS [J].
DAHLBERG, BEJ ;
KENIG, CE ;
VERCHOTA, GC .
DUKE MATHEMATICAL JOURNAL, 1988, 57 (03) :795-818
[8]   HARDY-SPACES AND THE NEUMANN PROBLEM IN L-RHO FOR LAPLACES-EQUATION IN LIPSCHITZ-DOMAINS [J].
DAHLBERG, BEJ ;
KENIG, CE .
ANNALS OF MATHEMATICS, 1987, 125 (03) :437-465
[9]   ORTHONORMAL BASES OF COMPACTLY SUPPORTED WAVELETS [J].
DAUBECHIES, I .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 1988, 41 (07) :909-996
[10]   POTENTIAL TECHNIQUES FOR BOUNDARY-VALUE PROBLEMS ON C1-DOMAINS [J].
FABES, EB ;
JODEIT, M ;
RIVIERE, NM .
ACTA MATHEMATICA, 1978, 141 (3-4) :165-186