2-POINT QUASI-FRACTIONAL APPROXIMATIONS TO THE BESSEL-FUNCTIONS JV(X) OF FRACTIONAL ORDER

被引:6
作者
MARTIN, P
GUERRERO, AL
机构
关键词
D O I
10.1016/0021-9991(89)90161-7
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
引用
收藏
页码:487 / 492
页数:6
相关论文
共 12 条
[1]  
[Anonymous], 1970, HDB MATH FUNCTIONS
[2]   ORTHOGONAL RATIONAL FUNCTIONS ON A SEMI-INFINITE INTERVAL [J].
BOYD, JP .
JOURNAL OF COMPUTATIONAL PHYSICS, 1987, 70 (01) :63-88
[4]  
BOYER CP, 1977, RELATIONSHIP LIE THE, P147
[5]   FRACTIONAL APPROXIMATIONS FOR THE SPHERICALLY SYMMETRIC COULOMB SCATTERING WAVE-FUNCTIONS [J].
CHALBAUD, E ;
MARTIN, P .
JOURNAL OF MATHEMATICAL PHYSICS, 1984, 25 (05) :1268-1273
[6]   HIGHER-ORDER 2-POINT QUASI-FRACTIONAL APPROXIMATIONS TO THE BESSEL-FUNCTIONS J0(X) AND J1(X) [J].
GUERRERO, AL ;
MARTIN, P .
JOURNAL OF COMPUTATIONAL PHYSICS, 1988, 77 (01) :276-281
[7]  
LUKE YL, 1977, ALGORITHMS COMPUTATI, P203
[8]  
LUKE YL, 1969, SPECIAL FUNCTIONS TH, V2, P196
[9]   FRACTIONAL APPROXIMATIONS TO THE BESSEL-FUNCTION J0(X) [J].
MARTIN, P ;
GUERRERO, AL .
JOURNAL OF MATHEMATICAL PHYSICS, 1985, 26 (04) :705-707
[10]  
MARTIN P, 1984, P INT C PLASMA PHYS, V2, P416