MATCHED RING DIBLOCK AND LINEAR TRIBLOCK COPOLYMERS IN DILUTE-SOLUTION

被引:17
作者
AMIS, EJ
HODGSON, DF
WU, WJ
机构
[1] Department of Chemistry, University of Southern California, Los Angeles, California
[2] Vestar Inc., San Dimas, California
关键词
CYCLIC BLOCK COPOLYMER; THETA CONDITIONS; LIGHT SCATTERING; MICELLIZATION;
D O I
10.1002/polb.1993.090311318
中图分类号
O63 [高分子化学(高聚物)];
学科分类号
070305 ; 080501 ; 081704 ;
摘要
A unique diblock copolymer ring and its linear triblock copolymer precursor composed of polystyrene and polydimethylsiloxane have been characterized by static and dynamic light scattering in dilute solution. The measurements were carried out with cyclohexane as the solvent over a temperature range of 12-35 degrees C. Cyclohexane has the useful property that it is nearly isorefractive with the PDMS so that the PDMS block segments are invisible to the light-scattering technique and it is a theta solvent for polystyrene at 34.5 degrees C. The block polymers in this work contain 35.1 wt % of styrene as determined by proton NMR. In the linear triblock polymer, the polystyrene is the center block with PDMS blocks on each side. Static light scattering measurements give 4.31 X 10(4) for the average molecular weight of the whole polymer. Light scattering also shows that the apparent theta temperature for the linear triblock is shifted by 15 degrees C to a value of 20 degrees C at which point the second virial coefficient drops sharply and phase separation begins to induce aggregation. The diblock ring, however, shows a strongly positive second virial coefficient and no aggregation even at 12 degrees C which is the limit of these experiments. The diffusion coefficients of cyclic diblock (D-c) and linear triblock copolymer (D-l) are measured by dynamic light scattering. The ratio of diffusion coefficients of cyclic and linear copolymers at 14.9 degrees C and 30 degrees C are D-c/D-l = 1.13 and 1.107 respectively. These compare well with prediction of 1.18 for this ratio from consideration of the hydrodynamics of matched linear and cyclic polymer chains. Dynamic light scattering quantitatively confirms that the linear copolymer experiences a solvent quality change near 20 degrees C but the cyclic polymer remains in good solvent over the entire experimental temperature range. (C) 1993 John Wiley and Sons, Inc.
引用
收藏
页码:2049 / 2056
页数:8
相关论文
共 43 条
[1]  
AMIS EJ, 1991, POLYM PREPR, V32, P617
[2]  
[Anonymous], 1971, MODERN THEORY POLYM
[3]   DYNAMIC LIGHT-SCATTERING FROM MICROSTRUCTURED BLOCK COPOLYMER SOLUTIONS [J].
BALSARA, NP ;
STEPANEK, P ;
LODGE, TP ;
TIRRELL, M .
MACROMOLECULES, 1991, 24 (23) :6227-6230
[4]  
BENOIT H, 1972, LIGHT SCATTERING POL, pCH10
[5]   VISCOSITY SEDIMENTATION ET CETERA OF RING- AND STRAIGHT-CHAIN POLYMERS IN DILUTE SOLUTION [J].
BLOOMFIE.V ;
ZIMM, BH .
JOURNAL OF CHEMICAL PHYSICS, 1966, 44 (01) :315-&
[6]   OFF-LATTICE MONTE-CARLO STUDY OF RING POLYMERS [J].
BRUNS, W ;
NAGHIZADEH, J .
JOURNAL OF CHEMICAL PHYSICS, 1976, 65 (02) :747-751
[7]   NEW THEORETICAL APPROACH TO PROBLEM OF SOLUTION BEHAVIOR OF BRANCHED POLYMERS [J].
CANDAU, F ;
BENOIT, H ;
REMPP, P .
MACROMOLECULES, 1972, 5 (05) :627-&
[8]  
CASASSA EF, 1965, J POLYM SCI A, V3, P604
[10]   STUDIES OF CYCLIC AND LINEAR POLY(DIMETHYL SILOXANES) .9. QUASI-ELASTIC LIGHT-SCATTERING AND CONCENTRATION DEPENDENCES OF DIFFUSION-COEFFICIENTS [J].
EDWARDS, CJC ;
BANTLE, S ;
BURCHARD, W ;
STEPTO, RFT ;
SEMLYEN, JA .
POLYMER, 1982, 23 (06) :873-876