SOME CHARACTERIZATIONS OF ORTHANT MONOTONIC NORMS

被引:3
作者
FUNDERLIC, RE
机构
[1] Computer Sciences Division, Oak Ridge National Laboratory Union Carbide Corporation, Nuclear Division Oak Ridge
关键词
D O I
10.1016/0024-3795(79)90121-6
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In real n-space the orthant monotonic norms of Gries [5] can be given a new characterization similar to one for monotonic norms: a norm is orthant monotonic if and only if for every D=diag(δ1,δ2,...,δn)≥0, the operator norm of D equals max δi. This gives an alternative proof to Gries's: a norm is orthant monotonic if and only if its dual norm is orthant monotonic. Also, it follows that the principal axis vectors are self-dual for orthant monotonic norms. © 1979.
引用
收藏
页码:77 / 83
页数:7
相关论文
共 9 条
[1]  
Bauer F.L., 1961, NUMER MATH, V3
[2]  
BAUER FL, 1961, NUMER MATH, V3, P241
[3]   RANK OF A DIFFERENCE OF MATRICES AND ASSOCIATED GENERALIZED INVERSES [J].
CLINE, RE ;
FUNDERLIC, RE .
LINEAR ALGEBRA AND ITS APPLICATIONS, 1979, 24 (APR) :185-215
[4]  
FUNDERLIC RE, 1970, CTC35 UN CARB REP
[5]  
FUNDERLIC RE, 1970, THESIS U TENNESSEE
[6]   CHARACTERIZATIONS OF CERTAIN CLASSES OF NORMS [J].
GRIES, D .
NUMERISCHE MATHEMATIK, 1967, 10 (01) :30-&
[7]  
Householder A. S., 1964, THEORY MATRICES NUME
[8]  
HOUSEHOLDER AS, 1958, J ASSOC COMPUT MACH, V5, P204
[9]  
von Neumann John, 1937, TOMSK U REV, V1, P286