ONE-STEP SPLITTING METHODS FOR SEMI-DISCRETE PARABOLIC EQUATIONS

被引:28
作者
VANDERHOUWEN, PJ
VERWER, JG
机构
[1] Mathematisch Centrum, Amsterdam, 1091 AL
关键词
method of lines; Numerical analysis; ordinary differential equations; partial differential equations; splitting methods;
D O I
10.1007/BF02265311
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
The main purpose of the paper is to discuss splitting methods for parabolic equations via the method of lines. Firstly, we deal with the formulation of these methods for autonomous semi-discrete equations {Mathematical expression}f satisfying a linear splitting relation {Mathematical expression}. A class of one-step integration formulas is defined, which is shown to contain all known splitting methods, provided the functions fi are defined appropriately. For a number of methods stability results are given. Secondly, attention is paid to alternating direction methods for problems with an arbitrary non-linear coupling between space derivatives. © 1979 Springer-Verlag.
引用
收藏
页码:291 / 309
页数:19
相关论文
共 24 条
[1]   IMPLICIT RUNGE-KUTTA PROCESSES [J].
BUTCHER, JC .
MATHEMATICS OF COMPUTATION, 1964, 18 (85) :50-&
[2]   ON THE NUMERICAL INTEGRATION OF D2U-DX2+D2U-DY2=DU-D+ IMPLICIT METHODS [J].
DOUGLAS, J .
JOURNAL OF THE SOCIETY FOR INDUSTRIAL AND APPLIED MATHEMATICS, 1955, 3 (01) :42-65
[3]   GALERKIN METHODS FOR PARABOLIC EQUATIONS [J].
DOUGLAS, J ;
DUPONT, T .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1970, 7 (04) :575-&
[4]  
Douglas J., 1962, NUMER MATH, V4, P41, DOI DOI 10.1007/BF01386295
[5]  
Douglas J., 1964, NUMER MATH, V6, P428
[6]  
Fairweather G., 1967, SIAM J NUMER ANAL, V4, P163
[7]   STRANG-TYPE DIFFERENCE SCHEMES FOR MULTIDIMENSIONAL PROBLEMS [J].
GOTTLIEB, D .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1972, 9 (04) :650-661
[8]  
Gourlay A. R., 1972, Journal of the Institute of Mathematics and Its Applications, V9, P80
[9]  
Gourlay A. R., 1970, Journal of the Institute of Mathematics and Its Applications, V6, P375
[10]  
Gourlay A.R., 1971, IMA J APPL MATH, V7, P216, DOI [10.1093/imamat/7.2.216, DOI 10.1093/IMAMAT/7.2.216]