CHERNOFF BOUNDS ON ERROR PROBABILITY FOR DETECTION OF NON-GAUSSIAN SIGNALS

被引:5
作者
EVANS, JE [1 ]
机构
[1] MIT, LINCOLN LAB, LEXINGTON, MA 02173 USA
关键词
D O I
10.1109/TIT.1974.1055289
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
引用
收藏
页码:569 / 577
页数:9
相关论文
共 21 条
[1]  
[Anonymous], 1951, Mem. Am. Math. Soc.
[2]  
[Anonymous], 1960, THEORY PROBAB APPL, DOI DOI 10.1137/1105016
[3]  
COLLINS LD, 1968, THESIS MIT
[4]  
Duncan T. E., 1967, Ph.D. dissertation
[5]  
EVANS JE, 1970, MIT97 RES LAB EL QUA, P113
[6]  
EVANS JE, 1971, THESIS MIT
[7]  
Girsanov IV, 1960, THEOR PROBAB APPL, V3, P285, DOI [DOI 10.1137/1105027, 10.1137/1105027]
[8]  
HILLE E, 1948, FUNCTIONAL ANALYSIS
[9]   A GENERAL LIKELIHOOD-RATIO FORMULA FOR RANDOM SIGNALS IN GAUSSIAN NOISE [J].
KAILATH, T .
IEEE TRANSACTIONS ON INFORMATION THEORY, 1969, 15 (03) :350-+
[10]  
Karlin S., 1960, J MATH ANAL APPL, V1, P163, DOI DOI 10.1016/0022-247X(60)90020-2