STRONG APPROXIMATION FOR SET-INDEXED PARTIAL-SUM PROCESSES, VIA KMT CONSTRUCTIONS-II

被引:9
作者
RIO, E
机构
关键词
CENTRAL LIMIT THEOREM; SET-INDEXED PROCESS; PARTIAL-SUM PROCESS; INVARIANCE PRINCIPLE; METRIC ENTROPY WITH INCLUSION; MULTIVARIATE EMPIRICAL PROCESSES;
D O I
10.1214/aop/1176989138
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Let (X(i))i is-an-element-of Z(+)d be an array of zero-mean independent identically distributed random vectors with values in R(k) with finite variance, and let J be a class of Borel subsets of [0, 1]d. If, for the usual metric, J is totally bounded and has a convergent entropy integral, we obtain a strong invariance principle for an appropriately smoothed version of the partial-sum process {SIGMA(i is-an-element-of nu S)X(i): S is-an-element-of J} with an error term depending only on J and on the tail distribution of X1. In particular, when J is the class of subsets of [0, 1]d with alpha-differentiable boundaries introduced by Dudley, we prove that our result is optimal.
引用
收藏
页码:1706 / 1727
页数:22
相关论文
共 25 条
[1]   A UNIFORM CENTRAL-LIMIT-THEOREM FOR SET-INDEXED PARTIAL-SUM PROCESSES WITH FINITE VARIANCE [J].
ALEXANDER, KS ;
PYKE, R .
ANNALS OF PROBABILITY, 1986, 14 (02) :582-597
[2]  
Bartfai P., 1966, STUD SCI MATH HUNG, V1, P161
[3]   LAW OF THE ITERATED LOGARITHM FOR SET-INDEXED PARTIAL SUM PROCESSES WITH FINITE VARIANCE [J].
BASS, RF .
ZEITSCHRIFT FUR WAHRSCHEINLICHKEITSTHEORIE UND VERWANDTE GEBIETE, 1985, 70 (04) :591-608
[4]   FUNCTIONAL LAW OF THE ITERATED LOGARITHM AND UNIFORM CENTRAL LIMIT-THEOREM FOR PARTIAL-SUM PROCESSES INDEXED BY SETS [J].
BASS, RF ;
PYKE, R .
ANNALS OF PROBABILITY, 1984, 12 (01) :13-34
[5]   IRREGULARITIES OF DISTRIBUTION .1. [J].
BECK, J .
ACTA MATHEMATICA, 1987, 159 (1-2) :1-49
[6]   LOWER BOUNDS ON THE APPROXIMATION OF THE MULTIVARIATE EMPIRICAL PROCESS [J].
BECK, J .
ZEITSCHRIFT FUR WAHRSCHEINLICHKEITSTHEORIE UND VERWANDTE GEBIETE, 1985, 70 (02) :289-306
[7]  
BORISOV IS, 1985, 4TH P VILN C, V1, P251
[8]   ON TAIL BEHAVIOR OF SUMS OF INDEPENDENT RANDOM VARIABLES [J].
BREIMAN, L .
ZEITSCHRIFT FUR WAHRSCHEINLICHKEITSTHEORIE UND VERWANDTE GEBIETE, 1967, 9 (01) :20-&
[9]  
BRONSHTEIN EM, 1976, SIBERIAN MATH J+, V17, P393
[10]   SAMPLE FUNCTIONS OF GAUSSIAN PROCESS [J].
DUDLEY, RM .
ANNALS OF PROBABILITY, 1973, 1 (01) :66-103