MODULATION OF CELLULAR PROLIFERATION ALTERS GLUTAMINE TRANSPORT AND METABOLISM IN HUMAN HEPATOMA-CELLS

被引:39
作者
BODE, BP [1 ]
SOUBA, WW [1 ]
机构
[1] HARVARD UNIV,MASSACHUSETTS GEN HOSP,SCH MED,DIV SURG ONCOL,BOSTON,MA 02114
关键词
D O I
10.1097/00000658-199410000-00001
中图分类号
R61 [外科手术学];
学科分类号
摘要
Objective The authors determined the effects of growth inhibition on glutamine transport and metabolism in human hepatoma cells. Summary Background Data Hepatoma cells exhibit markedly higher (10- to 30-fold) glutamine uptake than normal human hepatocytes, via a disparate transporter protein with a higher affinity for glutamine. Currently, little is known about the effects of growth arrest on glutamine transport and metabolism in hepatoma cells. Methods The authors determined proliferation rates, glutamine transport, and glutaminase activities in the human hepatoma cell lines HepG2, Huh-7, and SK-Hep, both in the presence and absence of the chemotherapeutic agents novobiocin and sodium butyrate. The transport activities for alanine, arginine, and leucine also were determined in both treated and untreated cells. Glutaminase activity was determined in normal human liver tissue and compared with that present in hepatoma cells. Results Glutaminase activities were similar in all three cell lines studied, despite differences in proliferation rates, and were sixfold higher than the activity in normal human liver. In contrast to normal hepatocytes, which expressed the liver-specific glutaminase, hepatomas expressed the kidney-type isoform. Sodium butyrate (1 mmol/L) and novobiocin (0.1 mmol/L) inhibited cellular proliferation and reduced both glutamine transport and glutaminase activity by more than 50% after 48 hours in the faster-growing, less differentiated SK-Hep cells. In contrast, the agents required 72 hours to attenuate glutamine uptake by 30% and 50% in the slower-growing, more differentiated HepG2 and Huh-7 cell lines, respectively. Treatment of all three cell lines with novobiocin/butyrate also resulted in a 30% to 60% attenuation of the transport of alanine, arginine, and leucine, and glutamine, indicating that inhibition of cellular proliferation similarly affects disparate amino acid transporters. Conclusions Hepatocellular transformation is characterized by a marked increase in glutamine transport and metabolism. Inhibition of cellular proliferation attenuates glutamine transport and metabolism.
引用
收藏
页码:411 / 424
页数:14
相关论文
共 22 条
[1]   CONTROLLED SYNTHESIS OF HBSAG IN A DIFFERENTIATED HUMAN-LIVER CARCINOMA-DERIVED CELL-LINE [J].
ADEN, DP ;
FOGEL, A ;
PLOTKIN, S ;
DAMJANOV, I ;
KNOWLES, BB .
NATURE, 1979, 282 (5739) :615-616
[2]  
BODE BP, 1994, UNPUB HEPATOLOGY
[3]   ABNORMAL STRUCTURE AND EXPRESSION OF P53 GENE IN HUMAN HEPATOCELLULAR-CARCINOMA [J].
BRESSAC, B ;
GALVIN, KM ;
LIANG, TJ ;
ISSELBACHER, KJ ;
WANDS, JR ;
OZTURK, M .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1990, 87 (05) :1973-1977
[4]   EFFECTS OF TUMOR-NECROSIS-FACTOR ON SYSTEM ASC-MEDIATED GLUTAMINE TRANSPORT BY HUMAN FIBROBLASTS [J].
DUDRICK, PS ;
BLAND, KI ;
SOUBA, WW .
JOURNAL OF SURGICAL RESEARCH, 1992, 52 (04) :347-352
[5]   127 CULTURED HUMAN TUMOR-CELL LINES PRODUCING TUMORS IN NUDE MICE [J].
FOGH, J ;
FOGH, JM ;
ORFEO, T .
JNCI-JOURNAL OF THE NATIONAL CANCER INSTITUTE, 1977, 59 (01) :221-226
[6]   THE CLUSTER-TRAY METHOD FOR RAPID MEASUREMENT OF SOLUTE FLUXES IN ADHERENT CULTURED-CELLS [J].
GAZZOLA, GC ;
DALLASTA, V ;
FRANCHIGAZZOLA, R ;
WHITE, MF .
ANALYTICAL BIOCHEMISTRY, 1981, 115 (02) :368-374
[7]  
HAUSSINGER D, 1990, BIOCHEM J, V267, P281
[8]   PURIFICATION AND CHARACTERIZATION OF RAT-LIVER GLUTAMINASE [J].
HEINI, HG ;
GEBHARDT, R ;
BRECHT, A ;
MECKE, D .
EUROPEAN JOURNAL OF BIOCHEMISTRY, 1987, 162 (03) :541-546
[9]   ARGININE TRANSPORT IN HUMAN LIVER - CHARACTERIZATION AND EFFECTS OF NITRIC-OXIDE SYNTHASE INHIBITORS [J].
INOUE, Y ;
BODE, BP ;
BECK, DJ ;
LI, AP ;
BLAND, KI ;
SOUBA, WW .
ANNALS OF SURGERY, 1993, 218 (03) :350-363
[10]  
ISOM HC, 1992, CANCER RES, V52, P940