A GENERALIZATION OF WIRTINGER INEQUALITY

被引:38
作者
DACOROGNA, B [1 ]
GANGBO, W [1 ]
SUBIA, N [1 ]
机构
[1] ESCULEA POLITECN NACL,QUITO,ECUADOR
来源
ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE | 1992年 / 9卷 / 01期
关键词
D O I
10.1016/S0294-1449(16)30249-9
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let alpha(I) = alpha(I) (p, q) = min {parallel-to u' parallel-to L(p)/parallel-to u parallel-to L(q)\ u is-an-element-of W1, p (-1, 1) back slash {0}, u(-1) = u(1), integral-1/1 u\u\q-2 = 0} alpha(II) = alpha(II) (p, q) = min {parallel-to u' parallel-to L(p)/parallel-to u parallel-to L(q)\ u is-an-element-of W1, p (-1, 1) back slash {0}, u(-1) = u(1), integral-1/1 u = 0}. We compute explicitly alpha(I) and we show that for q less-than-or-equal-to 2 p, alpha(I) = alpha(II), while for q sufficiently large alpha(II) < alpha(I).
引用
收藏
页码:29 / 50
页数:22
相关论文
共 7 条
[1]  
DACOROGNA B, 1992, J MATH PURES APPL, V71
[2]   On Wulff's geometric theorem for the balanced form of crystals [J].
Dinghas, A .
ZEITSCHRIFT FUR KRISTALLOGRAPHIE, 1944, 105 (04) :304-314
[3]  
HARDY GH, 1961, INEQUALITIES
[4]  
Talenti G., 1976, ANN MAT PUR APPL, V110, P353, DOI DOI 10.1007/BF02418013
[5]  
TALENTI G, 1977, CALCOLO VARIAZIONI
[6]   CRYSTALLINE VARIATIONAL PROBLEMS [J].
TAYLOR, JE .
BULLETIN OF THE AMERICAN MATHEMATICAL SOCIETY, 1978, 84 (04) :568-588
[7]   On the question of speed of growth and dissolution of crystal surfaces. [J].
Wulff, G .
ZEITSCHRIFT FUR KRYSTALLOGRAPHIE UND MINERALOGIE, 1901, 34 (5/6) :449-530