STABILIZATION OF PERIODIC AND QUASI-PERIODIC MOTION IN CHAOTIC SYSTEMS THROUGH CHANGES IN THE SYSTEM VARIABLES

被引:18
作者
GUEMEZ, J
GUTIERREZ, JM
IGLESIAS, A
MATIAS, MA
机构
[1] UNIV CANTABRIA,DEPT MATEMAT PLICADA,E-39005 SANTANDER,SPAIN
[2] UNIV SALAMANCA,DEPT QUIM FIS,E-37008 SALAMANCA,SPAIN
关键词
D O I
10.1016/0375-9601(94)90728-5
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
This work deals with the suppression of chaos in dissipative systems that exhibit a transition from the coexistence of several periodic oscillations to deterministic chaos. The application of changes in the system variables is able to yield the prechaotic behaviour, that can be either quasiperiodic (two inconmensurate frequencies) or periodic (frequency locking), in the same way as for the original system. The performance of the method is shown by application to the two-dimensional Burgers map.
引用
收藏
页码:429 / 433
页数:5
相关论文
共 17 条
[1]  
Berge P., 1986, ORDER CHAOS DETERMIN
[2]  
Burgers J. M., 1939, KON NED AKAD WET, V17, P1
[3]  
Curry J., 1977, SPRINGER NOTES MATH, V668, P48
[4]   QUASI-PERIODICITY AND DYNAMICAL-SYSTEMS - AN EXPERIMENTALISTS VIEW [J].
GLAZIER, JA ;
LIBCHABER, A .
IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS, 1988, 35 (07) :790-809
[5]   ATTRACTORS ON AN N-TORUS - QUASIPERIODICITY VERSUS CHAOS [J].
GREBOGI, C ;
OTT, E ;
YORKE, JA .
PHYSICA D, 1985, 15 (03) :354-373
[6]   ARE 3-FREQUENCY QUASI-PERIODIC ORBITS TO BE EXPECTED IN TYPICAL NON-LINEAR DYNAMICAL-SYSTEMS [J].
GREBOGI, C ;
OTT, E ;
YORKE, JA .
PHYSICAL REVIEW LETTERS, 1983, 51 (05) :339-342
[7]   CRITICAL EXPONENTS FOR CRISIS-INDUCED INTERMITTENCY [J].
GREBOGI, C ;
OTT, E ;
ROMEIRAS, F ;
YORKE, JA .
PHYSICAL REVIEW A, 1987, 36 (11) :5365-5380
[8]   CONTROL OF CHAOS IN UNIDIMENSIONAL MAPS [J].
GUEMEZ, J ;
MATIAS, MA .
PHYSICS LETTERS A, 1993, 181 (01) :29-32
[9]  
GUEMEZ J, UNPUB
[10]  
MacDonald N., 1985, European Journal of Physics, V6, P143, DOI 10.1088/0143-0807/6/3/004