Flash-induced absorption changes of pH-indicating dyes were investigated in photosystem II enriched membrane fragments, in order to retrieve the individual contributions to proton release of the successive transitions of the Kok cycle. These stoichiometric coefficients were found to be, in general, noninteger and to vary as a function of pH. Proton release on the S0 --> S1 step decreases from 1.75 at pH 5.5 to 1 at pH 8, while, on S1 --> S2 the stoichiometry increases from 0 to 0.5 in the same pH range and remains close to 1 for S2 --> S3. These findings are analyzed in terms of pK shifts of neighboring amino acid residues caused by electrostatic interactions with the redox centers involved in the two first transitions. The electrochromic shift of a chlorophyll, associated with the S transitions, responding to local electrostatic effects was investigated under similar conditions. The pH dependence of this signal upon the successive transitions was found correlated with the titration of the proton release stoichiometries, expressing the electrostatic balance between the oxidation and deprotonation processes.