Period doubling for bimodal maps: a horseshoe for a renormalisation operator

被引:33
作者
MacKay, R. S. [1 ]
van Zeijts, J. B. J. [1 ]
机构
[1] Univ Warwick, Inst Math, Coventry CV4 7AL, W Midlands, England
关键词
D O I
10.1088/0951-7715/1/1/011
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We find universal scaling behaviour for the period-doubling tree in two-parameter families of bimodal maps of the interval. A renormalisation group explanation is given in terms of a horseshoe with a Cantor set of two-dimensional unstable manifolds instead of the usual fixed point with one unstable direction.
引用
收藏
页码:253 / 277
页数:25
相关论文
共 10 条
[1]   ON FEIGENBAUM FUNCTIONAL-EQUATION G-DEGREES-G(LAMBDAX)+LAMBDAG(X)=O [J].
CAMPANINO, M ;
EPSTEIN, H ;
RUELLE, D .
TOPOLOGY, 1982, 21 (02) :125-129
[2]   QUANTITATIVE UNIVERSALITY FOR A CLASS OF NON-LINEAR TRANSFORMATIONS [J].
FEIGENBAUM, MJ .
JOURNAL OF STATISTICAL PHYSICS, 1978, 19 (01) :25-52
[3]   UNIVERSAL METRIC PROPERTIES OF NON-LINEAR TRANSFORMATIONS [J].
FEIGENBAUM, MJ .
JOURNAL OF STATISTICAL PHYSICS, 1979, 21 (06) :669-706
[4]   UNIVERSAL VECTOR SCALING IN ONE-DIMENSIONAL MAPS [J].
FRASER, S ;
KAPRAL, R .
PHYSICAL REVIEW A, 1984, 30 (02) :1017-1025
[5]  
GROSSMANN S, 1977, Z NATURFORSCH A, V32, P1353
[6]   A COMPUTER-ASSISTED PROOF OF THE FEIGENBAUM CONJECTURES [J].
LANFORD, OE .
BULLETIN OF THE AMERICAN MATHEMATICAL SOCIETY, 1982, 6 (03) :427-434
[7]   SOME FLESH ON THE SKELETON - THE BIFURCATION STRUCTURE OF BIMODAL MAPS [J].
MACKAY, RS ;
TRESSER, C .
PHYSICA D, 1987, 27 (03) :412-422
[8]  
MACKAY RS, 1988, J LONDON MA IN PRESS
[9]  
RODRIGUEZ PMI, 1987, THESIS U AUTONOMA BA
[10]  
[No title captured]