EDGE-COLORING OF COMPLETE HYPERGRAPHS .1.

被引:25
作者
BARANYAI, Z
机构
[1] Dept. Analizis I., Eötvös Loránd University Muzeum krt. 68
关键词
D O I
10.1016/0095-8956(79)90002-9
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
This paper contains and generalizes the solution of the following classical problem:. If h | n then the h-element subsets of an n-element set can be partitioned into (h-1n-1) classes so that every class contains n h disjoint h-element sets and every h-element set appears in exactly one class. A short formulation of this statement is: If h | n then the hypergraph Knh is 1-factorizable. In this paper we study the factorization and edge-coloring problems of the hypergraph Krxmh (which is the complete, regular, h-uniform, r-partite hypergraph with m vertices in each of the r classes of vertices). © 1979.
引用
收藏
页码:276 / 294
页数:19
相关论文
共 15 条
[1]  
BARANYAI Z, 1975, INFINITE FINITE SETS, P91
[2]  
Berge C., 1973, GRAPHS HYPERGRAPHS, V7
[3]  
BERGE C, 1975, INFINITE FINITE SETS, P159
[4]  
Brace A., 1972, COMBINATORICA, P18
[5]  
BROUWER AE, 1976, ZW8176 MATH CTR REP
[6]  
Hoffman AJ., 1956, LINEAR INEQUALITIES, P223
[7]  
Katona G.O.H., 1972, J COMB THEORY B, V13, P183
[8]  
Katona Gyula, 1966, J COMB THEORY, V1, P174
[9]   DECOMPOSITION OF R-PARTITE GRAPHS INTO EDGE-DISJOINT HAMILTON CIRCUITS [J].
LASKAR, R ;
AUERBACH, B .
DISCRETE MATHEMATICS, 1976, 14 (03) :265-268
[10]  
LASKAR R, 1972, J LOND MATH SOC, V4, P489