AN ADAPTIVE EMPIRICAL BAYES ESTIMATOR OF THE MULTIVARIATE NORMAL-MEAN UNDER QUADRATIC LOSS

被引:18
作者
JUDGE, GG
HILL, RC
BOCK, ME
机构
[1] LOUISIANA STATE UNIV, BATON ROUGE, LA 70803 USA
[2] PURDUE UNIV, W LAFAYETTE, IN 47907 USA
基金
美国国家科学基金会;
关键词
D O I
10.1016/0304-4076(90)90079-9
中图分类号
F [经济];
学科分类号
02 ;
摘要
For shrinkage estimators to achieve significant risk improvement over their traditional competitors, one must identify the region or subspace where the unknown location vector lies or is thought likely to lie a priori. When vague or conflicting priors suggest that a broad class of estimators may be effective under a squared-error-loss measure, new minimax or near-minimax empirical Bayes estimators are proposed that make use of Stein's unbiased estimator of the risk to identify the optimum risk-effective shrinkage estimator. © 1990.
引用
收藏
页码:189 / 213
页数:25
相关论文
共 32 条
[1]  
Anderson T., 1984, INTRO MULTIVARIATE S
[2]  
Baranchik A., 1964, MULTIPLE REGRESSION
[3]   BAYESIAN INPUT IN STEIN ESTIMATION AND A NEW MINIMAX EMPIRICAL BAYES ESTIMATOR [J].
BERGER, J ;
BERLINER, LM .
JOURNAL OF ECONOMETRICS, 1984, 25 (1-2) :87-108
[5]   BAYESIAN ROBUSTNESS AND THE STEIN EFFECT [J].
BERGER, J .
JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 1982, 77 (378) :358-368
[6]  
Berger J.O., 1985, STAT DECISION THEORY, P74
[7]   SELECTING A MINIMAX ESTIMATOR OF A MULTIVARIATE NORMAL-MEAN [J].
BERGER, JO .
ANNALS OF STATISTICS, 1982, 10 (01) :81-92
[8]   ADMISSIBLE MINIMAX ESTIMATION OF A MULTIVARIATE NORMAL MEAN WITH ARBITRARY QUADRATIC LOSS [J].
BERGER, JO .
ANNALS OF STATISTICS, 1976, 4 (01) :223-226
[9]   MINIMAX ESTIMATORS OF MEAN OF A MULTIVARIATE NORMAL DISTRIBUTION [J].
BOCK, ME .
ANNALS OF STATISTICS, 1975, 3 (01) :209-218
[10]   ON ADMISSIBILITY OF INVARIANT ESTIMATORS OF ONE OR MORE LOCATION PARAMETERS [J].
BROWN, LD .
ANNALS OF MATHEMATICAL STATISTICS, 1966, 37 (05) :1087-&