THE FRACTIONAL CHROMATIC NUMBER OF MYCIELSKIS GRAPHS

被引:63
作者
LARSEN, M
PROPP, J
ULLMAN, D
机构
[1] MIT,CAMBRIDGE,MA 02139
[2] GEORGE WASHINGTON UNIV,WASHINGTON,DC
关键词
D O I
10.1002/jgt.3190190313
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The most familiar construction of graphs whose clique number is much smaller than their chromatic number is due to Mycielski, who constructed a sequence G(n) of triangle-free graphs with chi(G(n)) = n. In this article, we calculate the fractional chromatic number of G, and show that this sequence of numbers satisfies the unexpected recurrence a(n+1) = a(n) + (1/a(n)). (C) 1995 John Wiley & Sons, Inc.
引用
收藏
页码:411 / 416
页数:6
相关论文
共 14 条
[1]  
BLOOM DM, 1988, AM MATH MONTH, V95, P654
[2]  
BOLLOBAS B, 1979, DISCRETE MATH, V25, P27
[3]  
Chvatal Vasek, 1978, ANN DISCRETE MATH, V2, P151, DOI [10.1016/S0167-5060(08)70329-7]4,5, DOI 10.1016/S0167-5060(08)70329-7]4,5]
[4]  
FISHER DC, IN PRESS J GRAPH THE
[5]  
HARDY K, 1985, GREEN BOOK 100 PROBL
[6]  
HELL P, 1982, ANN DISCRETE MATH, V12, P155
[7]  
Hilton A., 1973, B LOND MATH SOC, V5, P302, DOI [10.1112/blms/5.3.302, DOI 10.1112/BLMS/5.3.302]
[8]   ON THE SHANNON CAPACITY OF A GRAPH [J].
LOVASZ, L .
IEEE TRANSACTIONS ON INFORMATION THEORY, 1979, 25 (01) :1-7
[9]   KNESER CONJECTURE, CHROMATIC NUMBER, AND HOMOTOPY [J].
LOVASZ, L .
JOURNAL OF COMBINATORIAL THEORY SERIES A, 1978, 25 (03) :319-324
[10]   HIDE AND SEEK, DATA STORAGE, AND ENTROPY [J].
MCELIECE, RJ ;
POSNER, EC .
ANNALS OF MATHEMATICAL STATISTICS, 1971, 42 (05) :1706-&