THE FRACTIONAL CHROMATIC NUMBER OF MYCIELSKIS GRAPHS

被引:63
作者
LARSEN, M
PROPP, J
ULLMAN, D
机构
[1] MIT,CAMBRIDGE,MA 02139
[2] GEORGE WASHINGTON UNIV,WASHINGTON,DC
关键词
D O I
10.1002/jgt.3190190313
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The most familiar construction of graphs whose clique number is much smaller than their chromatic number is due to Mycielski, who constructed a sequence G(n) of triangle-free graphs with chi(G(n)) = n. In this article, we calculate the fractional chromatic number of G, and show that this sequence of numbers satisfies the unexpected recurrence a(n+1) = a(n) + (1/a(n)). (C) 1995 John Wiley & Sons, Inc.
引用
收藏
页码:411 / 416
页数:6
相关论文
共 14 条
[11]  
Mycielski J., 1955, COLLOQ MATH-WARSAW, V3, P161
[12]  
Newman D.J., 1982, PROBLEM SEMINAR
[13]   ON TENSOR POWERS OF INTEGER PROGRAMS [J].
PEMANTLE, R ;
PROPP, J ;
ULLMAN, D .
SIAM JOURNAL ON DISCRETE MATHEMATICS, 1992, 5 (01) :127-143
[14]   THE ZERO ERROR CAPACITY OF A NOISY CHANNEL [J].
SHANNON, CE .
IRE TRANSACTIONS ON INFORMATION THEORY, 1956, 2 (03) :8-19