FROM ROTATIONS AND INCLINATIONS TO ZERO CONFIGURATIONAL VELOCITY SURFACES .2. THE BEST POSSIBLE CONFIGURATIONAL VELOCITY SURFACES

被引:15
作者
SAARI, DG
机构
来源
CELESTIAL MECHANICS | 1987年 / 40卷 / 3-4期
关键词
D O I
10.1007/BF01235841
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
引用
收藏
页码:197 / 223
页数:27
相关论文
共 18 条
[1]   ZERO VELOCITY SURFACES FOR GENERAL PLANAR 3-BODY PROBLEM [J].
BOZIS, G .
ASTROPHYSICS AND SPACE SCIENCE, 1976, 43 (02) :355-368
[2]   SOME TOPOLOGY OF 3-BODY PROBLEMS [J].
EASTON, R .
JOURNAL OF DIFFERENTIAL EQUATIONS, 1971, 10 (02) :371-&
[3]  
GOLUBEV V, 1968, SOVIET PHYSICS DOKLA, P373
[4]  
GOLUBEV V, 1967, SOVIET PHYSICS DOKLA, P527
[5]   TRIPLE CLOSE APPROACH IN THE 3-BODY PROBLEM - A LIMIT FOR THE BOUNDED ORBITS [J].
LASKAR, J .
CELESTIAL MECHANICS, 1984, 32 (01) :15-28
[6]   FINAL EVOLUTION OF N-BODY PROBLEM [J].
MARCHAL, C ;
SAARI, DG .
JOURNAL OF DIFFERENTIAL EQUATIONS, 1976, 20 (01) :150-186
[7]   HILL REGIONS FOR GENERAL 3-BODY PROBLEM [J].
MARCHAL, C ;
SAARI, DG .
CELESTIAL MECHANICS, 1975, 12 (02) :115-129
[8]   RELATIVE EQUILIBRIA AND THE VIRIAL THEOREM [J].
PALMORE, JI .
CELESTIAL MECHANICS, 1979, 19 (02) :167-171
[9]  
Saari D. G., 1970, Periodic orbits, stability and resonances, P76
[10]  
Saari D. G., 1983, Motion of Planets and Natural and Artificial Satellites. Proceedings of a CNPq-NSF Symposium and Workshop, P27