SEMI-INFINITE WEIL COMPLEX AND THE VIRASORO ALGEBRA

被引:37
作者
FEIGIN, B [1 ]
FRENKEL, E [1 ]
机构
[1] HARVARD UNIV,DEPT MATH,CAMBRIDGE,MA 02138
关键词
D O I
10.1007/BF02100281
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We define a semi-infinite analogue of the Weil algebra associated an infinite-dimensional Lie algebra. It can be used for the definition of semi-infinite characteristic classes by analogy with the Chern-Weil construction. The second term of a spectral sequence of this Weil complex consists of the semi-infinite cohomology of the Lie algebra with coefficients in its "adjoint semi-infinite symmetric powers." We compute this cohomology for the Virasoro algebra. This is just the BRST cohomology of the bosonic beta-gamma-system with central charge 26. We give a complete description of the Fock representations of this bosonic system as modules over the Virasoro algebra, using Friedan-Martinec-Shenker bosonization. We derive a combinatorial identity from this result.
引用
收藏
页码:617 / 639
页数:23
相关论文
共 48 条
[1]  
Atiyah M., 1988, P S PURE MATH, V48, P285
[2]   THE MOMENT MAP AND EQUIVARIANT CO-HOMOLOGY [J].
ATIYAH, MF ;
BOTT, R .
TOPOLOGY, 1984, 23 (01) :1-28
[3]  
BAUILEU L, 1988, NUCL PHYS B B S, V5, P12
[4]   RENORMALIZATION OF GAUGE THEORIES [J].
BECCHI, C ;
ROUET, A ;
STORA, R .
ANNALS OF PHYSICS, 1976, 98 (02) :287-321
[5]  
BERLINE N, IN PRESS HEAT KERNEL
[6]   EXTENDED SUGAWARA CONSTRUCTION FOR THE SUPERALGEBRAS SU(M + 1/N + 1) .1. FREE-FIELD REPRESENTATION AND BOSONIZATION OF SUPER KAC-MOODY CURRENTS [J].
BOUWKNEGT, P ;
CERESOLE, A ;
MCCARTHY, JG ;
VANNIEUWENHUIZEN, P .
PHYSICAL REVIEW D, 1989, 39 (10) :2971-2986
[7]  
BOUWKNEGT P, 1990, CTP1861 PREPR
[8]   REPRESENTATIONS OF LOOP-GROUPS, DIRAC OPERATORS ON LOOP SPACE, AND MODULAR-FORMS [J].
BRYLINSKI, JL .
TOPOLOGY, 1990, 29 (04) :461-480
[9]  
CARTAN H., 1950, C TOPOLOGIE, P57
[10]  
DATE E, 1983, P RIMS S NONL INT SY, P39