PATH INTEGRAL ON THE QUANTUM PLANE

被引:53
作者
BAULIEU, L [1 ]
FLORATOS, EG [1 ]
机构
[1] ECOLE NORM SUPER,LPTENS,CNRS,UNITE LPR 701,F-75252 PARIS 05,FRANCE
关键词
D O I
10.1016/0370-2693(91)91227-M
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
We construct the path integral representation of quantum mechanics on the quantum plane with coordinates satisfying zzBAR = q2zBARz. To this end, we introduce a new differential and integral calculus, and generalize the holomorphic representations of Fermi and Bose particles. When q2 is a root of unity, we obtain an extension of Berezin calculus. We discuss also the irrational case, for which the formulae turn out to be similar.
引用
收藏
页码:171 / 178
页数:8
相关论文
共 17 条
[2]  
BIEDENHARN L, 1989, J PHYS A, V22, P4873
[3]  
CONNES A, 1986, IHES EXTRAIT PUB MAT, V62
[4]  
DRINFELD VG, 1985, DOKL AKAD NAUK SSSR, V32, P254
[5]  
FAIRLIE D, 1990, DURHAM U PREPRINT
[6]  
FLORATOS EG, 1990, ENS LPTENS9025 PREPR
[7]  
HAYASHI T, 1990, COMMUN MATH PHYS, V127, P72
[8]  
ITZYKSON C, 1979, QUANTUM FIELD THEORY
[9]   ON Q-ANALOGUES OF THE QUANTUM HARMONIC-OSCILLATOR AND THE QUANTUM GROUP SU(2)Q [J].
MACFARLANE, AJ .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1989, 22 (21) :4581-4588
[10]  
MANIN Y, 1988, CTR RES MATH, V1561