CQF FILTER BANKS MATCHED TO SIGNAL STATISTICS

被引:11
作者
VANDENDORPE, L
机构
[1] Université Catholique de Louvain, Laboratoire de Télécommunications et Télédétection, B-1348 Louvain-la-Neuve
关键词
SUBBAND CODING; WAVELET CODING; DISTORTION THEORY; IMAGE CODING;
D O I
10.1016/0165-1684(92)90084-A
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
The Karhunen-Loeve transformation (KLT) is the best one among all orthogonal transformations of a given size from the point of view of the coding gain. When bits have been optimally allocated to transform coefficients, the distortion is only a function of the product of the transform coefficient variances. The KLT minimizes this product under the constraint of a given sum of these variances. It is optimum from both points of view of coding pin maximization and zonal sampling. The same objective can be pursued with subband systems. The analysis filter bank can be chosen so as to minimize the product of subband variances. That question will be dealt with in the case of a 2-band system. It will be shown that CQF filters banks fulfilling the criterion of minimum product of subband variances are also optimum from the two points of view mentioned for the KTL.
引用
收藏
页码:237 / 249
页数:13
相关论文
共 22 条
[1]  
Ahmed, Rao, Orthogonal Transforms for Digital Signal Processing, (1975)
[2]  
Barnwell, Smith, Filter banks for analysis-reconstruction systems: A tutorial, Proc. Internat. Conf. Acoust. Speech Signal Process, pp. 1999-2003, (1990)
[3]  
Crochiere, Rabiner, Multirate Digital Signal Processing, (1983)
[4]  
Dalleur, Analyse théorique et réalisation d'un système de réduction du débit binaire en vue d'une transmission numérique du signal de télévision en couleur, Thèse de Doctorat en Science Appliquées, (1984)
[5]  
Delsarte, Macq, Slock, “Signal-adapted multiresolution transform for image coding”, IEEE Transactions on Information Theory, 38, 2 No,, pp. 897-904
[6]  
Gharavi, Tabatabai, Subband coding of monochrome and color images, IEEE Trans. Circuits and Systems, 35, 2, pp. 207-214, (1988)
[7]  
Jayant, Noll, Digital Coding of Waveforms, (1984)
[8]  
Johnston, The filter family designed for use in quadrature mirror filter banks, Proc. Internat. Conf. Acoust. Speech Signal Process., pp. 191-195, (1977)
[9]  
Mallat, A theory for multiresolution decomposition: The wavelet representation, IEEE Trans. Pattern Anal. Machine Intell., 11, 7, pp. 674-692, (1989)
[10]  
Mallat, Multifrequency channel decomposition of images and wavelet models, IEEE Trans. Acoust. Speech Signal Process., 37, 12, pp. 2091-2110, (1989)