A GENERALIZED-METHOD FOR CHARACTERIZING ELASTIC-ANISOTROPY IN SOLID LIVING TISSUES

被引:53
作者
KATZ, JL
MEUNIER, A
机构
[1] Dean of Engineering, Case Western Reserve University, Cleveland, 44106, Ohio
[2] Laboratoire de Recherches Orthopédiques, Faculté de Medecine Lariboisière-Saint-Louis, Paris
基金
加拿大自然科学与工程研究理事会;
关键词
D O I
10.1007/BF00705346
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
The microstructure of cortical bone may exhibit either transverse isotropic or orthotropic symmetry, thus requiring either five or nine independent elastic stiffness coefficients (or compliances), respectively, to describe its elastic anisotropy. Our previous analysis to describe this anisotropy in terms of two scalar quantities for the transverse isotropic case is extended here to include orthotropic symmetry. The new results for orthotropic symmetry are compared with previous calculations using the transverse isotropic analysis on the same sets of anisotropic elastic constants for bone, determined either by mechanical or by ultrasonic experiments . In addition, the orthotropic calculation has been applied to full sets of orthotropic elastic stiffness coefficients of a large variety of wood species. Although having some resemblance to plexiform bone in microstructural organization, there is a dramatic difference in both the shear and the compressive elastic anisotropy between the two materials: wood is at least one order of magnitude more anisotropic than bone.
引用
收藏
页码:1 / 8
页数:8
相关论文
共 20 条
  • [1] Katz J.L., Meunier A., J. Biomech., 20, (1987)
  • [2] Katz J.L., Ukraincik, J. Biomech., 4, (1971)
  • [3] Yoon H.S., Katz J.L., J. Biomech., 9, (1976)
  • [4] Yoon H.S., Katz J.L., J. Biomech., 9, (1976)
  • [5] Yoon H.S., Katz J.L., Proceedings of Ultrasonics Symposium, 76Ch1120-5SU, (1976)
  • [6] Lipson S., Katz J.L., J. Biomech., 17, (1984)
  • [7] Voigt W., Lehrbuch der Kristallphysik, (1910)
  • [8] Hearmon R.F.S., The elastic constants of anisotropic materials—II, Advances in Physics, 5, (1956)
  • [9] Reuss A., Berechnung der Fließgrenze von Mischkristallen auf Grund der Plastizitätsbedingung für Einkristalle ., ZAMM - Zeitschrift für Angewandte Mathematik und Mechanik, 9, (1929)
  • [10] Hill R., J. Mech. Phys. Solids, 11, (1963)