FINTIE-SIZE SCALING FOR MEAN-FIELD PERCOLATION

被引:13
作者
GAVEAU, B
SCHULMAN, LS
机构
[1] CLARKSON UNIV,DEPT PHYS,POTSDAM,NY 13699
[2] COLUMBIA UNIV,DEPT CHEM,NEW YORK,NY 10027
关键词
PERCOLATION; FINITE-SIZE SCALING; TRANSFER MATRIX; ASYMPTOTIC DEGENERACY;
D O I
10.1007/BF01053587
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
By studying transfer matrix eigenvalues, correlation lengths for a mean field directed percolation model are obtained both near and far from the critical regime. Near criticality, finite-size scaling behavior is derived and an analytic technique is provided for obtaining the finite-size scaling function. Our methods involve the generating function, matched asymptotic expansions, and certain formulas developed for the study of eigenvalues of the transfer matrix for metastability.
引用
收藏
页码:613 / 634
页数:22
相关论文
共 8 条
[1]  
[Anonymous], 1991, MATH BIOL
[2]   METASTABLE DECAY-RATES AND ANALYTIC CONTINUATION [J].
GAVEAU, B ;
SCHULMAN, LS .
LETTERS IN MATHEMATICAL PHYSICS, 1989, 18 (03) :201-208
[3]   AN EXAMPLE OF A PHASE-TRANSITION IN AN OPEN PSEUDOBIMOLECULAR SYSTEM [J].
GAVEAU, MA ;
GAVEAU, B .
JOURNAL OF STATISTICAL PHYSICS, 1982, 28 (04) :745-756
[4]  
LANDAU LD, 1965, QUANTUM MECHANICS
[5]   INFINITE-RANGE MEAN-FIELD PERCOLATION - TRANSFER-MATRIX STUDY OF LONGITUDINAL CORRELATION LENGTH [J].
PRIVMAN, V ;
SCHULMAN, LS .
JOURNAL OF STATISTICAL PHYSICS, 1991, 64 (1-2) :207-226
[6]  
Privman V., 1990, FINITE SIZE SCALING
[7]   PERCOLATION AND GALAXIES [J].
SCHULMAN, LS ;
SEIDEN, PE .
SCIENCE, 1986, 233 (4762) :425-431
[8]   PERCOLATION ANALYSIS OF STOCHASTIC-MODELS OF GALACTIC EVOLUTION [J].
SCHULMAN, LS ;
SEIDEN, PE .
JOURNAL OF STATISTICAL PHYSICS, 1982, 27 (01) :83-118