ON THE SEARCH FOR NEW LEARNING RULES FOR ANNS

被引:22
作者
BENGIO, S
BENGIO, Y
CLOUTIER, J
机构
[1] FRANCE TELECOM,CNET,TNT,RIO,LAB,F-22307 LANNION,FRANCE
[2] UNIV MONTREAL,DEPT IRO,MONTREAL,PQ H3C 3J7,CANADA
关键词
D O I
10.1007/BF02279935
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In this paper, we present a framework where a learning rule can be optimized within a parametric learning rule space. We define what we call parametric learning rules and present a theoretical study of their generalization properties when estimated from a set of learning tasks and tested over another set of tasks. We corroborate the results of this study with practical experiments.
引用
收藏
页码:26 / 30
页数:5
相关论文
共 7 条
[1]  
[Anonymous], 2003, GENETIC PROGRAMMING
[2]  
BENGIO S, 1992, C OPTIMALITY BIOL AR
[3]  
BENGIO Y, 1990, 751 U MONTR DEP INF
[4]  
CHALMERS D, 1990, 1990 P CONN MOD SUMM
[5]  
HOLLAND JH, 1975, ADAPTATION NATURAL A
[6]   OPTIMIZATION BY SIMULATED ANNEALING [J].
KIRKPATRICK, S ;
GELATT, CD ;
VECCHI, MP .
SCIENCE, 1983, 220 (4598) :671-680
[7]  
Vapnik V, 1982, ESTIMATION DEPENDENC